You have activated a Bronze+ WP Symposium feature, but you have not entered your Activation Code. Get one on the Membership page on the WP Symposium website.

La parole, G65 ?

Written by xavdelerce on . Posted in Astuces sur les appareils, Aurical, Expansion, Le gain, Le niveau de sortie Max., Logiciels de réglage, mesure in vivo, N'importe quoi !, Réglages des appareils, SPLoGramme

Once upon a time : des aides auditives qui se réglaient avec des sons Wobulés, au caisson de mesure.

Cela se passait dans des temps forts lointains, où les Elfes, les Ents et les hommes vivaient en bonne harmonie; un temps où Saroumane ne commençait pas à faire n’importe quoi. En ce temps là, les assureurs assuraient, les banquiers banquaient, la sécu remboursait, les Zaudios appareillaient, les opticiens lunettaient, les professions réglementaient (jeu de mots…), etc. « Toute chose à sa place, toute place a sa chose », comme disait ma grand-mère.

Tout allait bien, quoi !

Et chez nous, les Zaudios (ça me fait penser à Claude PONTI et l’île des Zertes), un son « moyen » était à 65dB SPL, un son « faible » à 50dB SPL (allez, je vous le fais à 40dB SPL !) et un son « fort » à 80dB SPL.

C’était le bon temps : de bonnes vieilles valeurs simples, robustes et fiables ! Et qui nous parlaient bien !

Mais tout changea. Quand ? je ne saurais trop le dire… Des tours sont tombées, des bulles ont éclaté, des 4×4 sillonnent des déserts que photographient des drones, le vin français titre désormais à 14,5°, des regroupements/fusions/acquisitions ont eu lieu, etc, etc, etc.

Et désormais « On doit pouvoir s’épanouir en voyant « Fin » en l’air », comme dit la chanson…

Bref, tout a changé dans ce monde, mais un bastion résiste, en dehors des modes et du temps : le logiciel de réglage des Zaudios !!

G_BEG_Wid2G_WidG_STKG_SIG_RSDG_PKG_OT

Mais oui ! Vous l’avez remarqué : dans notre monde terrible de complexité, le logiciel de réglage se compose toujours (en autres, quand même) du bon (= le G65/moyen/modéré), de la brute (G80/fort) et du truand (expansion, G40/G50/faible, carrément fourbe celui-là !). J’oubliai aussi Dieu : le MPO !

C’est simple et de bon aloi, mais un peu tiédasse quand même pour « fort, moyen et faible », pas bien précis en tous cas. Et surtout, ces niveaux d’entrée vaguement flous contrastent furieusement avec la précision diabolique (au dB près) des pas de réglage.

Pour couronner le tout, on ne sait même pas s’il s’agit en entrée de dB SPL, de dB HL, de Sones. Et surtout, je le redis : ça n’a pas bougé depuis… que ces logiciels de réglages existent ! Nuance quand même : depuis que les circuits WDRC à trois points d’enclenchements existent, c’est à dire depuis peu pour certains ;-) .

  • A quoi correspondent aujourd’hui ces réglages hérités des temps anciens, lorsque par exemple, un patient va nous dire : « Les voix fortes sont un peu trop fortes » ? Les fabricants veulent-ils que nous touchions le « G80″ ? le « Fort » ?
  • Pour augmenter la perception de la voix « moyenne », faut-il toucher « Modéré » ou « G65″  ?
  • Où commence et finit la zone couverte par « Modéré » ? de 50 à 70dB SPL ?
  • Et les autres zones ?

Avant éventuellement d’apporter un peu de précisions, on présumera (mais ce n’est pas explicite…) que ce qu’affiche un logiciel de réglage sous la forme « Expansion », G40/50/65 et 80 ou autres « Faible, Modéré, Fort » concerne les niveaux d’entrée. Puisque on part du principe qu’aujourd’hui, toutes les aides auditives ont des compressions en entrée (AGCi) et en sortie (AGCo/MPO); donc tout ce qui est inférieur à 80dB (SPL ? Oui !) en entrée est régit par les AGCi.

C’est de là que vient la grande ambiguïté : une discordance entre l’affichage logiciel et/ou in-vivo qui est un niveau de sortie, et le niveau d’entrée, souvent invisible. Lorsque l’audioprothésiste règle une aide auditive, il voit çà sur son logiciel de réglage :

SPL_PK_TARGET

Et/ou éventuellement il voit ça en mesure in vivo :

REAR_65

Dans les deux cas ci dessus, le logiciel ou la mesure donnent le niveau de sortie prévu ou mesuré dans le conduit auditif pour la voix « moyenne » (65dB SPL) en entrée, qui est ici (zone entourée) de 90dB SPL entre 2 et 4KHz.

Donc si on voulait, par exemple, augmenter cette fameuse zone 2/4KHz, il faudrait :

  • augmenter le G80, puisqu’on est à 90dB SPL in vivo ?
  • augmenter le G65, puisqu’on est à voix moyenne en entrée ?
  • autre chose ?

Réponse : augmenter le gain entre 40 et 50dB d’entrée…

… parce que la voix moyenne (pour le niveau à long terme, c’est à dire le niveau de la cible donnée par telle ou telle méthodologie) est à environ +/- 50dB SPL en entrée.

Toute la difficulté est là :

  1. Raisonner en entrée alors que nous visualisons en sortie
  2. Se dépatouiller avec des niveaux « logiciels » qui n’ont rien à voir avec les niveaux réels de la parole en entrée

J’ai voulu essayer de donner une correspondance entre le signal d’entrée (ce signal étant une voix), et l’action à entreprendre dans les logiciels pour avoir un impact sur ses différents niveaux d’énergie (classés en percentiles) et dans quatre zones fréquentielles différentes.

Vous trouverez donc ci dessous les niveaux logiciels intervenants dans les réglages spécifiques de la parole, pour les zones 250/500Hz, 500/1000Hz, 1000/2000Hz et 2000/4000Hz; trois percentiles de parole (crêtes=  percentile 99 , long terme= LTASS = env. percentile 65 et vallées = percentiles 30), le tout à trois niveaux d’entrée (faible, moyenne et forte):

Voix faible (55dB SPL)

V55

Télécharger ce fichier « 55dB SPL »

Voix moyenne (65dB SPL)

V65

Télécharger ce fichier « 65dB SPL »

 

Voix forte (75dB SPL)

V80

Télécharger ce fichier « 75dB SPL »

Et là, oui, ça va mieux : on commence à comprendre que le « G80″ ne va pas servir à grand chose, et que même le « G65″ est finalement peu utilisé. Il va donc falloir faire attention à sélectionner des aides auditives dont le premier TK sera réglable, ou réputées avoir une expansion de très bas niveau, car même la voix « moyenne » est constituée d’indices de très faibles niveaux…

Mais attention : ces différentes zones dynamiques sont très approximatives, et surtout, différentes d’un fabricant à l’autre. Il faudrait connaître les TK exacts et donc pour cela avoir les courbes de transfert (entrée/sortie) qui sont bien souvent absentes… Et même quand ces courbes I/O sont présentes, la plupart commencent leur affichage à 40dB SPL (rien à voir et à savoir en dessous ?). Dommage…

Et Dieu dans tout ça ? (le MPO !)

Et bien lui, il ne fait jamais rien comme les autres, c’est connu ! Si vous reprenez la mesure in-vivo ci-dessus, vous constaterez qu’un MPO peut agir, disons dès 90dB SPL et que les crêtes de la voix moyenne dans la zone 2/4KHz, qui sont régies en entrée par le gain à 50/65dB SPL peuvent être atteintes (et détruites) par un MPO trop bas ou trop actif (ou volontairement réglé comme cela). Donc on aurait finalement deux informations à surveiller : le niveau en entrée, souvent inférieur à 65dB SPL dans une bande de fréquence, et le niveau en sortie, affiché par le logiciel ou la mesure in vivo.

La balle est maintenant dans le camp des fabricants. Il est temps de nous donner un choix d’affichage plus « réaliste » pour les niveaux vocaux en entrée :

  • Pourquoi ne pas proposer (en option dans les logiciels) des réglages adaptés aux niveaux d’énergie de la parole ? Je suggère « G35″, « G50″ et « G65″ par exemple qui couvriraient la voix faible à forte.
  • Pourquoi ne pas permettre d’afficher (à la demande) les spectres en entrée de la voix faible, ou moyenne ou forte, dans la fenêtre de niveau de sortie ? Certains, comme OTICON le proposent (voix moyenne).
  • Enfin, en mesure in vivo, pourquoi ne pas afficher lors d’une mesure vocale, le spectre en entrée correspondant ? FreeFit le propose à chaque niveau, Interacoustics, pour un seul niveau (voix moyenne).

Voilà, voilà. J’en ai fini avec mes récriminations qui, je l’espère, feront avancer le shmilblick (vous aurez remarqué deux très jolis mots placés dans une même phrase !).

Merci d’être parvenus jusqu’à la fin de ce loooooonnnng post, et bonne année 2015 !

 

Crédit image pour les spectres à long terme de la parole : Aurical FreeFit.

Diverses constantes de temps d’une mesure in vivo

Written by xavdelerce on . Posted in Affinity, Astuces sur les appareils, Chaînes de mesure, mesure in vivo, mesure in-vivo, SPLoGramme

La mesure in vivo est souvent vue comme une mesure du spectre à long terme d’un signal après son amplification par l’appareil auditif. Donc une mesure spectrale.

Les cibles de gain ou de niveau de sortie nous donnent des indications afin, dans chaque bande de tiers d’octave, de fournir tel ou tel gain ou niveau de sortie.

Mais si un bruit blanc ou rose est constant dans le temps (que son spectre soit mesuré sur 1 ou 30″, il est le même), cela fait bien longtemps que l’on ne teste plus les appareils avec ce genre de signal. Aujourd’hui, le signal de test le plus utilisé est l’ISTS, au caisson ou in vivo. Ce signal est un signal de parole, très fluctuant dans le temps et dont le spectre dans les premières secondes n’est pas forcément représentatif du spectre à long terme (sur 1 minute par exemple) :

istsLorsque l’on regarde ce signal, plusieurs interrogations :

  • Combien de temps mesurer ? la minute complète du signal ou 5 secondes ?
  • Comment avoir une idée de la répartition de l’énergie dans le temps ? (en clair, est-il possible d’avoir une représentation temporelle et non spectrale du signal)
  • Doit-on faire la mesure sur la moyenne des derniers événements acoustiques qui se sont passés dans la seconde ? Des 5 dernières secondes ? Plus ?

 

  • La mesure du spectre à « long » terme :

En mesure in-vivo du niveau de sortie appareillé (REAR) la cible (DSL ou NAL) correspond au spectre moyenné sur le long terme. Mais « long terme » combien ? Si vous mettez « 1 seconde », le spectre va changer en permanence en fonction de la composition fréquentielle au cours du temps, et si vous mettez « 30 secondes » votre courbe sera certes être très stable, mais après un changement de réglage pendant la mesure, il vous faudra 30 secondes pour en voir l’effet…

L’astuce consiste alors à effectuer une moyenne glissante : la mesure se fait en continu (case « Mesure continue » cochée), mais, par exemple ici, seuls les événements des 8 dernières secondes comptent dans la moyenne (« Temps de mesure » = temps d’intégration sur 8 secondes) :

RéglagesREAR65

  • Combien de temps mesurer :

Là, ce n’est pas paramétrable, ou alors il faut définir le paramètre « Temps de mesure » et décocher « Mesure continue » : la mesure s’arrêtera quand le temps sera atteint. Dans ce cas, le spectre à long terme serait intégré sur 8 secondes puis la mesure s’arrêterait.

Une autre solution consiste à laisser le signal tourner en boucle avec « Mesure continue », et à arrêter ni trop tôt ni trop… quoi ? J’en avais déjà parlé : il est important de laisser la mesure en niveau de sortie appareillé (REAR) se faire au moins 10 secondes, et laisser passer le phonème /ch/ présent dans l’ISTS et qui fait littéralement exploser le niveau de sortie à 2/4KHz avec certains appareils; il est présent vers 12/15 secondes.

En conséquence, une mesure sur 15 à 20 secondes semble bien et permet de modifier un ou deux réglages et d’avoir le temps d’en visualiser l’effet (8 secondes après dans l’illustration ci-dessus). Le temps de mesure se fait au jugé par l’audioprothésiste, et en général, on peut se fixer un repère d’arrêt, par exemple vers ce qui ressemble à « poderos » dans l’ISTS (env. 18 secondes).

AN: bien sûr, en mesure de gain d’insertion, le temps n’est pas aussi important puisqu’en général le REIG est le même au cours du temps (à 1 ou 2dB près). Les premières secondes de la mesure donnent la « bonne » mesure. Compter donc 5 à 10 secondes de mesure en REIG pour laisser à l’appareil le temps de se stabiliser.

  • Analyse temporelle « de base » = min/max :

Jusqu’à maintenant c’est du spectral (niveau/fréquence), mais la chaîne de mesure peut analyser, dans le temps et dans chaque tiers d’octave, les événements les plus forts (les crêtes du signal, niveaux dépassés seulement 1% du temps) et de plus faibles intensités (les vallées du signal, niveaux dépassés 70% du temps).

Case à cocher: « Afficher min. -max », sans cocher aucune des autres cases (très important). Vous obtiendrez alors la dynamique du signal de parole (à environ +12/-18dB du spectre à long terme). Cette dynamique n’est pas calculée avec la même moyenne que « Temps de mesure » (ici les 8 dernières secondes du signal mesuré en sortie), mais elle a sa propre constante de mesure, qui est de 5 secondes, non modifiable. Donc vous pouvez avoir une constante de mesure pour le spectre à long terme, alors que les événements « min/max » (vallées/crêtes) ont leur propre constante de temps de 5 secondes. Pourquoi 5 secondes ? parce que la fenêtre temporelle d’analyse est de 23ms, mais que le câble USB ne pouvant pas transporter autant d’informations, deux blocs d’analyse de 23ms sont moyennés, ce qui donne une fenêtre globale de 46ms (information reprise brute d’Interacoustics). Et comme il faut faire au minimum 100 mesures pour faire une analyse percentile correcte, on a donc 100*43ms= environ 5 secondes, temps minimal d’intégration.

Cet affichage vous donne la dynamique du signal avec une résolution fréquentielle de 43Hz.

  • Analyse temporelle « renforcée » :

Au lieu de cocher « Afficher min. _max », qui correspond à des valeurs « percentile 30<–>percentile 99″, vous souhaitez définir vous même l’analyse percentile du signal. Vous allez donc cocher et définir les zones qui vous intéressent dans « Analyse percentile ». En passant, si vous cochez 30% et 99%, ça revient au même que «  »Afficher min. _max »…

Donc à réserver à ceux d’entre nous qui veulent plus… pointu, genre analyse du 39ème percentile !

Cette analyse se fait sur les mêmes constantes que « min/max. »= 5 secondes, quelle que soit la constante de temps utilisée pour l’intégration du LTASS, et pour les mêmes raisons citées précédemment.

Cet affichage vous donne la dynamique du signal avec une résolution fréquentielle de 43Hz.

  • Analyse percentile « idéale » (normalisée) :

Toutes les chaînes de mesure analysent le signal par fenêtres temporelles successives. Certaines par fenêtres de 125ms, d’autres par fenêtres plus courtes. C’est le cas de l’Affinity qui peut réaliser une analyse toutes les 23ms, mais dont le port USB limite en réalité la vitesse. Comme son nom ne l’indique pas vraiment, l’analyse percentile analyse le signal dans le temps (ce n’est plus du spectral) afin d’en donner la répartition des différents niveaux en pourcentage, par tranches de 1%.

Après une analyse percentile en règle, la chaîne de mesure sera capable de vous dire que 37% du temps, le signal a dépassé telle valeur; que 2% du temps il a dépassé telle valeur, etc.

Donc, pour faire une analyse percentile correcte, il faut faire 100 mesures, au minimum. C’est ce à quoi correspond la case à cocher « Centiles pour mesure complète ». Certes, vous le remarquerez, la chaîne de mesure affichera bien la dynamique du signal sous forme de petits rectangles dans chaque bande de tiers d’octave (voir graphique ci-dessous pour analyse percentile 30/99) avant d’avoir atteint 15 secondes, mais cette analyse percentile ne sera complète (et donc fiable) qu’à partir de 15 secondes (après 200 mesures environ) , mais dans certains cas (plusieurs zones percentiles analysées), cette intégration pourra prendre jusqu’à 45 secondes (les crêtes et vallées se figent alors progressivement au cours de la mesure):

REAR65

Ce qui implique que si vous décidez de cocher cette option (recommandée…), vous avez alors deux constantes de temps en jeu: le spectre à long terme qui évolue ici dans une fenêtre glissante de 8 seconde, et l’analyse percentile qui elle, évolue dans un autre espace-temps (Igor et Grichka BOGDANOV, sortez de ce corps !!!!!), de 15 à 45 secondes. Vous l’avez peut être expérimenté: vos changements de réglages se voyaient relativement vite sur le LTASS, mais très lentement sur les crêtes/vallées en cochant « Centiles pour mesure complète ». Mais peut être n’aviez-vous pas osé…

AN: sans cocher cette option, il ne sera pas possible de cocher et donc d’obtenir la valeur suivante « Ratio de compression de la dynamique vocale ».

A l’écran, la zone dynamique donne progressivement la sensation de se « figer » au fur et à mesure que le test progresse. Une modification de réglage ne se visualisera alors quasiment pas sur la dynamique (à moins de refaire une mesure) alors qu’elle se visualise plus rapidement sur le spectre à long terme.

  • 1/3 octave and overlapping time windows:

Paramètre modifiant la zone temporelle d’analyse, en l’élargissant sur une fenêtre de 92ms, ce qui correspond à la norme de mesure IEC 60118-15. Cette norme définit les paramètres de mesure permettant une analyse percentile standardisée, mais également, pour ce qui suit, le calcul du ratio de compression de la dynamique vocale.

Vous trouverez des informations sur ces points dans ce document de travail qui a précédé la norme IEC 60118-15.

Cet affichage vous donne la dynamique du signal avec une résolution fréquentielle d’un tiers d’octave (et non plus 43Hz).

  • Ratio de compression de la dynamique vocale:

Ca c’est encore une autre histoire et je vous en avais déjà parlé.

Il s’agit de la case à cocher « Show dynamic compression ratio » qui vous donne dans chaque tiers d’octave la compression de la dynamique vocale entre l’entrée et la sortie sous forme de chiffres de 0.xx à plus de 2 (mais rarement plus de 2 quand même). Ce calcul n’est pas possible sans avoir modifié la fenêtre temporelle d’analyse à 92ms par le paramètre « 1/3 octave and overlapping time window ».

Afin de pouvoir mesurer la compression entre le signal à l’entrée de l’appareil et le signal à la sortie, il va falloir que la chaîne de mesure les aligne temporellement de façon très précise (précision du décalage inférieure à 10ms):

T_shift_speech_signalSans cet alignement, les mêmes zones temporelles (et donc spectrales) ne seraient pas analysées avant/après, ne permettant pas un calcul fiable du ratio de compression de la dynamique vocale.

AN: ce calcul de ratio nécessitant de connaître le signal à l’entrée pour le comparer au signal de sortie (d’où l’alignement des deux signaux), la chaîne de mesure crée alors un fichier .spectra avant la mesure. Il n’est donc pas possible d’effectuer ce calcul « à la volée », c’est à dire en live avec le Visible Speech.

Pour aller plus loin dans la compréhension de ces analyseurs spectraux et temporels que sont nos chaînes de mesure, je vous conseille la lecture de ce document passionnant in french dans le texte pour une fois (merci Franck ;-) ).

 

Bons paramétrages !

Et bon WE à tous !!

Merci à Dennis Mistry (Interacoustics) pour ses explications.

Enseignement continu des audioprothésistes

Written by genyseb2 on . Posted in Astuces sur les appareils

Vous avez tous reçu l’invitation à participer à l’EPU 2014 ! J’avoue que j’attends avec impatience cette formation qui, sans nul doute, nous apportera une meilleure compréhension des algorithmes sous tendants nos méthodologies fétiches :-)
 
 Seul petit hic, quid de DSL ? il n’est pas mentionné dans le programme :-(
 
 

Location:Rue des Châtaigniers,Marcq-en-Baroeul,France

« Dark Side of the Head »* Réglage objectif d’un système CROS/BiCROS

Written by xavdelerce on . Posted in Affinity, Astuces sur les appareils, BICROS, Chaînes de mesure, CROS, Marques, mesure in vivo, mesure in-vivo, Réglages des appareils, WIDEX

J’avais déjà évoqué la possibilité sur Affinity d’activer le microphone de référence opposé à la mesure in-vivo, et de l’intérêt de cette technique de mesure dans l’évaluation de l’ombre de la tête et de sa compensation par un système CROS.

Voici un cas clinique de validation de la mesure avec un patient appareillé dans un premier temps avec un Widex DREAM Fusion 330 à gauche, et cophose à droite:

Aud_CROS

Ce monsieur, très actif dans sa commune, participe à de nombreuses réunions et autres joyeuses activités associatives à base de canard gras dont Les Landes ont le secret…

Bref, sans surprise, il n’entend pas son voisin de droite, et ça l’embête bien. Donc une adaptation est programmée pour l’essai d’un système CROS Widex, qui en l’occurrence dans ce cas est un système BiCROS puisque son côté « bon » nécessite un appareillage.

La mise en évidence de l’ombre de la tête et le réglage de la balance microphonique se fait en trois étapes:

  1. Mesure in-vivo de la bonne oreille (Cas du CROS) ou de l’oreille appareillée (cas du BiCROS) avec HP à 90° (pile face à l’oreille)
  2. On laisse la sonde dans l’oreille et on fait tourner le patient de manière à présenter son oreille cophotique face au HP (mesure à 270°), MAIS on active le micro de référence opposé à la mesure =  mesure in-vivo oreille OK, mais micro de référence activé oreille cophotique –> on obtient l’ombre de la tête.
  3. Même mesure que 2 (toujours avec micro de référence activé à l’opposé de la mesure in-vivo), mais on place et on active le système CROS: si tout va bien on doit revenir à la mesure 1, sinon on ajuste le niveau de transmission dans le logiciel Compass GPS (ou Target ;-) ).

Démonstration pour ce patient:

REM_shadow

La partie colorée en jaune correspond pour ce patient à l’ombre de la tête.

On active le micro:

CROS_REM

La courbe bleue montre la captation de la bonne oreille/de l’oreille appareillée lorsque le son arrive du côté cophotique : l’ombre de la tête a été compensée.

Eventuellement, la balance microphonique permettra d’ajuster le niveau de la courbe bleue, jusqu’à coller à la noire:

CROX Dex

CQFD. Il restera à savoir si le patient en tire un bénéfice dans sa vie sociale.

Donc en résumé:

  • ça semble fonctionner et c’est un des rares moyens de mesurer cet « effet ombre »
  • ça permet d’ajuster la sensibilité du micro CROS avec précision et en connaissance de cause
  • permet de démontrer au patient le problème et la solution proposée…
  • attention aux appareils adaptatifs dans le cas du BiCROS, qui ont tendance, à l’opposé du HP, à augmenter l’amplification et donc à « gommer » l’ombre de la tête

Vous trouverez sous ce lien le fichier .iax pour Affinity permettant cette mesure. Attention: l’activation du micro de réf. opposé (en orange sur les copies d’écran) est à faire manuellement pour les étapes 2 et 3.

Mesures et création du test: Xavier DELERCE et Gilles ASSOULANT.

 

* The Pink CROS …

Les commentaires récents

xavdelerce

|

Non, j’ai bien dit « oreille gauche ». Cette (ces) oreille(s) coule(nt), et on est en permanence à la limite de l’otite. Dans l’idéal, si l’on voulait corriger les BF à gauche, pas de secret, il faudrait fermer. J’ai peur d’enclencher un cycle d’infections. Ensuite pour les HF à gauche: une correction qui démarre après 2KHz et qui s’arrête à 3KHz, c’est bien peu.
Tu comprends ma question: pas vraiment de possibilité de corriger BF et une bande passante HF très réduite, le tout associé à une intelligibilité finalement de bonne tenue (90%@40dB HL).
Alors oui, éventuellement un « petit » BiCROS.

leblanc

|

Je pense que tu veux dire « pas recommandé de fermer l’oreille droite »? Rien n’empêche d’essayer d’appareiller la droite et voir comment réagit l’oreille, en cas de suintements evidemment, passer en bicros.
L’OG est bien sur à appareiller à mon avis, en prévoyant un appareil compatible en bicros

genyseb2

|

Bien vu ! Et merci pour tes explications ! Bonne années !!!!!

xavdelerce

|

En cherchant « scoring span test » sur Google, on trouve pas mal de choses, notamment ce doc qui revient souvent.

Instagram @Audioprothese