Catégorie : Audiologie

Nous parlons souvent dans ce blog de formules de calcul de gains, de mesures in-vivo, de fonctions extraordinaires d’appareils sophistiqués, etc… et je crois qu’il le faut, car nous avons tous une forte demande de savoir ; il suffit de voir le monde présent aux EPU…

Mais pour une fois, je vais vous parler de « pifomètre », d’ à-peu-près et d’expérience de l’audioprothésiste (les uns n’entraînant pas l’autre !).

Lors de recherches en 2004 sur les Zones Mortes Cochléaires (ZMC), j’étais tombé sur un article d’un audiologiste Nord-américain connu, Van Summers, posant la question de l’utilité du test de ZMC (mais ne contestant pas l’existence de ces dernières).

Il faut se souvenir du contexte à l’époque : en 2000, B.C.J. Moore présentait le TEN-Test, test tonal de passation simple et rapide, supposé alors dépister les ZMC avec une fiabilité de 86% (par rapport aux courbes psychoacoustiques d’accord de fiabilité admise à 100%). Le congrès annuel américain de 2004 avait alors vu se déchaîner les passions avec de nombreuses communications remettant en cause le pourcentage de fiabilité (T. Trinne) ou le décalage de seuil nécessaire au test pour déterminer une ZMC (Van Summers). Finalement, Moore au congrès français avait été mieux acceuilli et moins attaqué !

Dans une publication en 2004, Van Summers en se demandait (malicieusement!) s’il était utile de pratiquer le test de dépistage des ZMC ou bien si l’expérience suffisait. Pour cela un audiogramme test (type pente de ski avec le 4000Hz à 90dB HL) avait été présenté à des audiologistes classés par années d’expérience (de pratique). On leur avait posé deux questions : Combien ? (de gain maximum) et Où ? (allez vous arrêter votre amplification) ; sous-entendu à « vue de nez », présumez-vous une ZMC, et si oui (ou non), quel gain allez-vous appliquer dans la zone concernée. Mais à aucun moment il n’était fait explicitement état d’une possible ZMC.

Il est intéressant de constater que les audiologistes les plus expérimentés ont spontanément limité leur bande passante (frequency cut-off) avant 4000Hz, et n’ont donc pas donné de gain dans la zone alors qu’ils en avaient les moyens. Les audiologistes les plus jeunes ont presque systématiquement fait le contraire, de manière inversement proportionnelle à leur nombre d’années de pratique… (« Yes, we can! »).

On aime les mesures in-vivo, on utilise ces formules de calcul de plus en plus précises, ces bandes passantes à 20000Hz (!), ces anti-larsen « du feu de Dieu » et autres réglages « diaboliques »… mais j’ai adoré cette petite touche de « Je le sens pas trop ce 4000! », bref, un peu de théorie du bordel ambiant dans ce monde cartésien (théorie de Roland Moreno, inventeur de la carte à puce, et qui veut qu’un peu d’incertitude soit nécessaire en toute chose)!

XD

L’article en question (extrait): « Do tests for cochlear dead regions provide important information for fitting hearing aids?« 

Une présentation intéressante sur les zones mortes et la transposition qui rejoint ce billet sur les « fausses routes » phonétiques.

Dans son livre « La machine à écouter » (Masson, 1977), l’acousticien E. LEIPP décrivait un cas (p. 166) rapporté par un certain RADAU en… 1867:
(je cite) « Une dame, assez sourde pour ne pas comprendre la parole normale, se faisait accompagner par sa bonne qui jouait du tambourin pendant qu’on lui parlait: elle percevait alors chaque mot ! ». A l’époque, cette dame passait au mieux, pour une « originale », au pire, pour une folle !
Le cas avait cependant intrigué ce monsieur RADAU, au point qu’il le cite dans son ouvrage « Acoustique », en 1867 donc.
A partir des années 60, quand l’usage des sonagrammes s’est répandu, il est devenu possible de « voir » la parole et du même coup, l’effet du bruit sur la perception de la parole. LEIPP à cette époque décrit la perception dans le bruit qui dégrade le message vocal, mais se demande si dans certains cas, notamment pour les sujets présentant une baisse du seuil d’audition, le bruit de fond, à faible niveau, ne « comblerait pas les vides entre les syllabes », évitant à ces personnes une perception hachée quasi-inintelligible.
Je m’explique: l’enchainement des syllabes, très variable en intensité se situe tantôt au-dessus du seuil, tantôt au-dessous, créant ainsi des « micro-interruptions » du signal; très pénalisantes pour le malentendant. LEIP se demandait alors si le tambourin de la vieille dame, avec son spectre large, ne comblait pas ces vides, le cerveau se chargeant de faire le reste…
Sans aller jusqu’à rajouter du bruit, on pourrait obtenir le même phénomène d’interruptions (temporelles) avec des compressions agissant dans la gamme énergétique du signal vocal. On ferait alors plus de mal que de bien !
Bien entendu, on ne connaissait pas encore à l’époque l’importance des transitions de formants, permettant de percevoir certains phonèmes même sans les entendre, mais l’hypothèse audacieuse s’est révélée juste: la vieille dame n’était pas folle !
Pourquoi je vous dis tout ça: car je viens de recevoir « Essentiel D6 » n° 22 – juin 2009 de SIEMENS (bientôt téléchargeable sur France Audiologie), et oh, surprise ! en page 2 on y parle des effets néfastes de l’interruption syllabique par des réducteurs de bruit inappropriés.
Merci, vieille dame inconnue !

Xavier DELERCE.

Le SPLoGram est la transformation en décibels SPL d’une audiométrie réalisée en dB HL, dans le but d’une utilisation pour la mesure des niveaux de sortie avec appareils auditifs. Ca c’est le côté « logiciel », effectué par les fabricants pour convertir nos audiométries HL.

Le SPLoGramme est censé représenter l’énergie sonore au tympan, en dB SPL, déclenchant une sensation auditive (seuil, inconfort, etc…)
Contrairement à l’Aurical qui propose la mesure par ME-intra donnant un résultat direct en dB SPL (par REDD), Affinity, comme la plupart des chaînes de mesure, propose des mesures audiométriques à l’insert EAR 3/5A, en dB HL.
Mais pour passer en dB SPL, il ne suffit pas d’utiliser les tableaux de conversion HL–>SPL, car le SPLoGram « idéal » est une représentation graphique des seuils en dB SPL dans le conduit auditif de votre patient, avec les phénomènes acoustiques propres à son volume, car les conduits auditifs font rarement 2cc (volume du coupleur servant à étalonner les inserts).
Deux solutions existent en fait pour effectuer cette conversion:
Le REDD (Real Ear Direct Dial) qui consiste à pratiquer une audiométrie en mesurant simultanément le niveau en dB SPL atteint au fond du conduit par une sonde in-vivo lorsque le patient répond. Cette technique est peut-être plus délicate au casque, mais elle est en revanche simplissime avec inserts sur Aurical (voir post sur ce blog « l’audiométrie en dB SPL sur Aurical »).
Le RECD (Real Ear to Coupleur Difference), utilisé ici: différence entre un signal mesuré au fond du conduit et au coupleur.
Sur Affinity, vous avez deux façons de mesurer le RECD: par l’embout ou par « tétine » en silicone de type tympanométrique reliée à un porte-sondes appelé « SPL60 ». L’avantage de ce dernier matériel est que vous n’avez pas à placer la sonde (elle est intégrée dans le matériel), l’inconvénient est de ne pas utiliser l’embout… à vous de voir. Si on utilise ce porte-sondes SPL60, il faudra alors utiliser un coupleur particulier SPL60 pour l’étape coupleur.
Vous sélectionnez une audiométrie réalisée aux inserts EAR 5A et vous passez dans l’onglet REM: la mesure RECD vous demandera ensuite si vous souhaitez réaliser la mesure par l’embout, par le SPL60 ou bien utiliser des valeurs RECD « standards ». Vous voudrez peut-être aussi transposer une mesure faite sur une oreille à l’autre oreille (dans le cas où ça bouge en cabine…).

Donc vous avez réalisé un RECD d’une session précédente et vous voulez l’intégrer à votre session de REM actuelle pour avoir des courbes personnalisées en dB SPL au tympan (SPLoGramme), il suffit de faire un clic droit sur le RECD du patient et de sélectionner « transfert sur actuel »:

 

Le SPLoGramme statistique (issus d’un RECD moyen) sera recalculé en fonction du RECD de votre patient:


Une fois la mesure RECD réalisée, les mesures REAR (Real Ear Aided Response) seront proposées soit en mesure in-vivo classique, soit au coupleur pondéré par le RECD. Le SPLoGramme lu est donc bien le rsultat du seuil en dB HL + RETSPL 2cc (pour passer du HL au SPL coupleur) + RECD mesuré: vous avez un SPLoGramme individualisé, et non plus estimé.

Attention toutefois à passer en mode « oreille » plutôt que « coupleur » si vous voulez faire une MIV sur le patient plutôt que simulée au coupleur (S-REM):


C’est maintenant aussi facile qu’avec Aurical…
C’était peu clair: ils vous le diront mieux que moi…

XAVIER DELERCE

Même si la maladie de Ménière n’est pas la cause première des personnes consultant pour une aide auditives, cette pathologie se rencontre surtout dans ces formes binaurales ; formes où le patient est obligé de se tourner vers les prothèses auditives pour pouvoir conserver un lien social.

Une étude récente menée par Melle Véronique HOULLIER met en évidence les difficultés rencontrées par les « Ménièriques ». Elle met en évidence les points spécifiques de ce type d’appareillage :

  • appareillage quand les crises sont interrompues
  • usage systématique du potentiomètre pour pouvoir répondre aux fluctuations de l’audition inhérentes à cette maladie.
  • Gain dans les aigues relativement faibles afin d’éviter de générer des distorsions.
  • des facteurs de compression importants.

Je parlais dans mes pages du test de Hirsch, qui permet de tester l’amélioration de la compréhension dans le bruit chez le porteur d’aide(s) auditive(s). Pour mémoire, le test de Hirsch est un test de compréhension en champs libre en présence d’un son perturbant, ici un bruit blanc. Toute la problématique est que le bruit blanc ne reflète pas la réalité… Le professeur LORENZI a mis en évidence dans ces derniers travaux que la compréhension dans le bruit est basé sur l’analyse, par l’oreille, des composantes temporelles de la voix. Or les tests effectués en présence d’un bruit blanc sont pessimistes et biaisent la réalité sonore du patient dans le bruit.

L’usage de bruit composite type ICRA semble plus réaliste que le bruit blanc. Il existe plusieurs type d’ICRA à ce titre, nous vous recommandons l’usage des ICRA pulsés avec des périodes de 50 à 60 Hz.

L’audioprothésiste peut donc penser que le patient est plus gêné que prévu dans le bruit. A ce titre, le professeur LORENZI nous incite à tester nos patients à l’aide d’un bruit fluctuant. A noter, les audioprothésistes de l’enseigne ENTENDRE possède un logiciel ad hoc pour tester les patients dans de telles conditions, bravo à eux !

A ce sujet, j’ai lu dans le Nouvelle observateur au sujet du test du Professeur Lorenzi et du Docteur Garnier :

Bien avant que se manifestent de réels problèmes pour entendre, la difficulté à comprendre dans le bruit peut être le signe d’une baisse de l’audition, une surdité qualifiée de modérée, liée à des lésions de la cochlée, ce joli escargot situé dans l’oreille interne. D’origine génétique, virale ou traumatique, ces lésions surviennent à tous âges et pas seulement avec le vieillissement. C’est pourquoi le réseau national d’audioprothésistes Entendre propose gratuitement dans toutes ses enseignes de réaliser un test de sensibilisation pour évaluer sa capacité à entendre dans le bruit. Une version médicale du test est également mise à la disposition des ORL pour établir un diagnostic.

«Jusqu’à présent les tests d’intelligibilité dans le bruit disponibles chez les ORL utilisent un bruit stationnaire», explique Stéphane Garnier, audioprothésiste et psycho-acousticien, membre du réseau entendre. «Le nouveau test que nous avons élaboré utilise un bruit fluctuant, comme l’est le fond sonore d’un restaurant, et il permet d’identifier la cause de ces problèmes d’audition dans le bruit qui a été récemment découverte : l’incapacité de l’oreille à capter des fluctuations rapides du son».

Cette découverte a été réalisée par l’équipe du psycho-acousticien Christian Lorenzi, du Laboratoire Psychologie de la Perception (CNRS/ GRAEC*), avec lequel travaille Stéphane Garnier. Elle permet de comprendre pourquoi certaines personnes ont du mal à ‘’démasquer’’ la parole au milieu du brouhaha alors que, d’après l’audiogramme classique, réalisé dans le silence, elles ont une bonne audition.

«Grâce aux études récentes sur la cochlée, nous savons que l’oreille n’analyse pas seulement le son en fonction de sa fréquence mais aussi en fonction du temps», explique Christian Lorenzi. «Nous avons mis en évidence deux types d’informations décodées par l’oreille : l’enveloppe temporelle du signal, composée des fluctuations lentes, comme le rythme des syllabes, et la structure temporelle fine, qui est beaucoup plus rapide» **. Les chercheurs ont mis au point des vocodeurs permettant de ne conserver que l’enveloppe globale ou que la structure fine du signal. Ils ont fait écouter ces sons distordus à des volontaires (cf les trois sons à écouter).

«Nous avons constaté que les personnes qui ont une bonne audition comprennent les deux types de sons. En revanche les personnes atteintes de surdité cochléaire entendent bien l’enveloppe temporelle lente du signal mais ont du mal à comprendre la structure fine» relate Lorenzi.

Ces résultats coïncident avec ce que les scientifiques savent depuis longtemps sur l’écoute en milieu bruyant. Pour une oreille bien portante, un bruit de fond permanent du type machine qui ronronne non-stop est plus perturbant qu’un bruit fluctuant de conversations. Pourquoi ? Parce que ce brouhaha est entrecoupé de silences de quelques dizaines de millièmes de seconde que le système auditif sait repérer. «C’est ce que l’on appelle les vallées du bruit : l’oreille va pêcher le signal sonore qui l’intéresse dans ces vallées plus calmes», précise Christian Lorenzi.

D’où l’importance de la structure temporelle fine mise en évidence par les chercheurs et de la capacité de la cochlée à capter ces fluctuations rapides. Lorsque des lésions dégradent cette fonction, l’oreille ne peut plus pêcher les informations dans les vallées du bruit et la conversation au restaurant devient un souci.

« Les vocodeurs expérimentaux produisent des sons distordus inutilisables hors du laboratoire, explique Stéphane Garnier. Nous essayons de les améliorer. Cependant, la corrélation entre la perception de la structure fine du signal et la capacité à démasquer la parole est très forte. Nous pouvons donc déduire la première en mesurant la seconde». C’est ainsi que l’audioprothésiste a mis au point un nouveau test pour le réseau Entendre qui évalue la capacité de démasquage de la parole dans un bruit fluctuant. La version destinée aux ORL donne une évaluation chiffrée.

«Notre objectif est de permettre aux ORL de compléter leur diagnostic, précise Stéphane Garnier, et aux audioprothésistes de proposer des appareils mieux adaptés à ces problèmes d’audition». Le test de sensibilisation proposé dans le réseau Entendre n’est pas un diagnostic : seul le médecin ORL est habilité à le faire.

Cécile Dumas
Sciences et Avenir.com
(14/09/07)

* Groupement de Recherche en audiologie expérimentale et clinique.
** Ces travaux ont été publiés dans les Proceedings of the National Academy of Sciences, Lorenzi et alii, 5 décembre 2006.

Bienvenu

Bienvenu chez Blog-Audioprothesiste.fr !

Qui Sommes nous ?

Contactez nous !

Je contacte Sébastien
Je contacte Xavier
Je contacte Jean Michel