You have activated a Bronze+ WP Symposium feature, but you have not entered your Activation Code. Get one on the Membership page on the WP Symposium website.

La parole, G65 ?

Written by xavdelerce on . Posted in Astuces sur les appareils, Aurical, Expansion, Le gain, Le niveau de sortie Max., Logiciels de réglage, mesure in vivo, N'importe quoi !, Réglages des appareils, SPLoGramme

Once upon a time : des aides auditives qui se réglaient avec des sons Wobulés, au caisson de mesure.

Cela se passait dans des temps forts lointains, où les Elfes, les Ents et les hommes vivaient en bonne harmonie; un temps où Saroumane ne commençait pas à faire n’importe quoi. En ce temps là, les assureurs assuraient, les banquiers banquaient, la sécu remboursait, les Zaudios appareillaient, les opticiens lunettaient, les professions réglementaient (jeu de mots…), etc. « Toute chose à sa place, toute place a sa chose », comme disait ma grand-mère.

Tout allait bien, quoi !

Et chez nous, les Zaudios (ça me fait penser à Claude PONTI et l’île des Zertes), un son « moyen » était à 65dB SPL, un son « faible » à 50dB SPL (allez, je vous le fais à 40dB SPL !) et un son « fort » à 80dB SPL.

C’était le bon temps : de bonnes vieilles valeurs simples, robustes et fiables ! Et qui nous parlaient bien !

Mais tout changea. Quand ? je ne saurais trop le dire… Des tours sont tombées, des bulles ont éclaté, des 4×4 sillonnent des déserts que photographient des drones, le vin français titre désormais à 14,5°, des regroupements/fusions/acquisitions ont eu lieu, etc, etc, etc.

Et désormais « On doit pouvoir s’épanouir en voyant « Fin » en l’air », comme dit la chanson…

Bref, tout a changé dans ce monde, mais un bastion résiste, en dehors des modes et du temps : le logiciel de réglage des Zaudios !!

G_BEG_Wid2G_WidG_STKG_SIG_RSDG_PKG_OT

Mais oui ! Vous l’avez remarqué : dans notre monde terrible de complexité, le logiciel de réglage se compose toujours (en autres, quand même) du bon (= le G65/moyen/modéré), de la brute (G80/fort) et du truand (expansion, G40/G50/faible, carrément fourbe celui-là !). J’oubliai aussi Dieu : le MPO !

C’est simple et de bon aloi, mais un peu tiédasse quand même pour « fort, moyen et faible », pas bien précis en tous cas. Et surtout, ces niveaux d’entrée vaguement flous contrastent furieusement avec la précision diabolique (au dB près) des pas de réglage.

Pour couronner le tout, on ne sait même pas s’il s’agit en entrée de dB SPL, de dB HL, de Sones. Et surtout, je le redis : ça n’a pas bougé depuis… que ces logiciels de réglages existent ! Nuance quand même : depuis que les circuits WDRC à trois points d’enclenchements existent, c’est à dire depuis peu pour certains ;-) .

  • A quoi correspondent aujourd’hui ces réglages hérités des temps anciens, lorsque par exemple, un patient va nous dire : « Les voix fortes sont un peu trop fortes » ? Les fabricants veulent-ils que nous touchions le « G80″ ? le « Fort » ?
  • Pour augmenter la perception de la voix « moyenne », faut-il toucher « Modéré » ou « G65″  ?
  • Où commence et finit la zone couverte par « Modéré » ? de 50 à 70dB SPL ?
  • Et les autres zones ?

Avant éventuellement d’apporter un peu de précisions, on présumera (mais ce n’est pas explicite…) que ce qu’affiche un logiciel de réglage sous la forme « Expansion », G40/50/65 et 80 ou autres « Faible, Modéré, Fort » concerne les niveaux d’entrée. Puisque on part du principe qu’aujourd’hui, toutes les aides auditives ont des compressions en entrée (AGCi) et en sortie (AGCo/MPO); donc tout ce qui est inférieur à 80dB (SPL ? Oui !) en entrée est régit par les AGCi.

C’est de là que vient la grande ambiguïté : une discordance entre l’affichage logiciel et/ou in-vivo qui est un niveau de sortie, et le niveau d’entrée, souvent invisible. Lorsque l’audioprothésiste règle une aide auditive, il voit çà sur son logiciel de réglage :

SPL_PK_TARGET

Et/ou éventuellement il voit ça en mesure in vivo :

REAR_65

Dans les deux cas ci dessus, le logiciel ou la mesure donnent le niveau de sortie prévu ou mesuré dans le conduit auditif pour la voix « moyenne » (65dB SPL) en entrée, qui est ici (zone entourée) de 90dB SPL entre 2 et 4KHz.

Donc si on voulait, par exemple, augmenter cette fameuse zone 2/4KHz, il faudrait :

  • augmenter le G80, puisqu’on est à 90dB SPL in vivo ?
  • augmenter le G65, puisqu’on est à voix moyenne en entrée ?
  • autre chose ?

Réponse : augmenter le gain entre 40 et 50dB d’entrée…

… parce que la voix moyenne (pour le niveau à long terme, c’est à dire le niveau de la cible donnée par telle ou telle méthodologie) est à environ +/- 50dB SPL en entrée.

Toute la difficulté est là :

  1. Raisonner en entrée alors que nous visualisons en sortie
  2. Se dépatouiller avec des niveaux « logiciels » qui n’ont rien à voir avec les niveaux réels de la parole en entrée

J’ai voulu essayer de donner une correspondance entre le signal d’entrée (ce signal étant une voix), et l’action à entreprendre dans les logiciels pour avoir un impact sur ses différents niveaux d’énergie (classés en percentiles) et dans quatre zones fréquentielles différentes.

Vous trouverez donc ci dessous les niveaux logiciels intervenants dans les réglages spécifiques de la parole, pour les zones 250/500Hz, 500/1000Hz, 1000/2000Hz et 2000/4000Hz; trois percentiles de parole (crêtes=  percentile 99 , long terme= LTASS = env. percentile 65 et vallées = percentiles 30), le tout à trois niveaux d’entrée (faible, moyenne et forte):

Voix faible (55dB SPL)

V55

Télécharger ce fichier « 55dB SPL »

Voix moyenne (65dB SPL)

V65

Télécharger ce fichier « 65dB SPL »

 

Voix forte (75dB SPL)

V80

Télécharger ce fichier « 75dB SPL »

Et là, oui, ça va mieux : on commence à comprendre que le « G80″ ne va pas servir à grand chose, et que même le « G65″ est finalement peu utilisé. Il va donc falloir faire attention à sélectionner des aides auditives dont le premier TK sera réglable, ou réputées avoir une expansion de très bas niveau, car même la voix « moyenne » est constituée d’indices de très faibles niveaux…

Mais attention : ces différentes zones dynamiques sont très approximatives, et surtout, différentes d’un fabricant à l’autre. Il faudrait connaître les TK exacts et donc pour cela avoir les courbes de transfert (entrée/sortie) qui sont bien souvent absentes… Et même quand ces courbes I/O sont présentes, la plupart commencent leur affichage à 40dB SPL (rien à voir et à savoir en dessous ?). Dommage…

Et Dieu dans tout ça ? (le MPO !)

Et bien lui, il ne fait jamais rien comme les autres, c’est connu ! Si vous reprenez la mesure in-vivo ci-dessus, vous constaterez qu’un MPO peut agir, disons dès 90dB SPL et que les crêtes de la voix moyenne dans la zone 2/4KHz, qui sont régies en entrée par le gain à 50/65dB SPL peuvent être atteintes (et détruites) par un MPO trop bas ou trop actif (ou volontairement réglé comme cela). Donc on aurait finalement deux informations à surveiller : le niveau en entrée, souvent inférieur à 65dB SPL dans une bande de fréquence, et le niveau en sortie, affiché par le logiciel ou la mesure in vivo.

La balle est maintenant dans le camp des fabricants. Il est temps de nous donner un choix d’affichage plus « réaliste » pour les niveaux vocaux en entrée :

  • Pourquoi ne pas proposer (en option dans les logiciels) des réglages adaptés aux niveaux d’énergie de la parole ? Je suggère « G35″, « G50″ et « G65″ par exemple qui couvriraient la voix faible à forte.
  • Pourquoi ne pas permettre d’afficher (à la demande) les spectres en entrée de la voix faible, ou moyenne ou forte, dans la fenêtre de niveau de sortie ? Certains, comme OTICON le proposent (voix moyenne).
  • Enfin, en mesure in vivo, pourquoi ne pas afficher lors d’une mesure vocale, le spectre en entrée correspondant ? FreeFit le propose à chaque niveau, Interacoustics, pour un seul niveau (voix moyenne).

Voilà, voilà. J’en ai fini avec mes récriminations qui, je l’espère, feront avancer le shmilblick (vous aurez remarqué deux très jolis mots placés dans une même phrase !).

Merci d’être parvenus jusqu’à la fin de ce loooooonnnng post, et bonne année 2015 !

 

Crédit image pour les spectres à long terme de la parole : Aurical FreeFit.

Diverses constantes de temps d’une mesure in vivo

Written by xavdelerce on . Posted in Affinity, Astuces sur les appareils, Chaînes de mesure, mesure in vivo, mesure in-vivo, SPLoGramme

La mesure in vivo est souvent vue comme une mesure du spectre à long terme d’un signal après son amplification par l’appareil auditif. Donc une mesure spectrale.

Les cibles de gain ou de niveau de sortie nous donnent des indications afin, dans chaque bande de tiers d’octave, de fournir tel ou tel gain ou niveau de sortie.

Mais si un bruit blanc ou rose est constant dans le temps (que son spectre soit mesuré sur 1 ou 30″, il est le même), cela fait bien longtemps que l’on ne teste plus les appareils avec ce genre de signal. Aujourd’hui, le signal de test le plus utilisé est l’ISTS, au caisson ou in vivo. Ce signal est un signal de parole, très fluctuant dans le temps et dont le spectre dans les premières secondes n’est pas forcément représentatif du spectre à long terme (sur 1 minute par exemple) :

istsLorsque l’on regarde ce signal, plusieurs interrogations :

  • Combien de temps mesurer ? la minute complète du signal ou 5 secondes ?
  • Comment avoir une idée de la répartition de l’énergie dans le temps ? (en clair, est-il possible d’avoir une représentation temporelle et non spectrale du signal)
  • Doit-on faire la mesure sur la moyenne des derniers événements acoustiques qui se sont passés dans la seconde ? Des 5 dernières secondes ? Plus ?

 

  • La mesure du spectre à « long » terme :

En mesure in-vivo du niveau de sortie appareillé (REAR) la cible (DSL ou NAL) correspond au spectre moyenné sur le long terme. Mais « long terme » combien ? Si vous mettez « 1 seconde », le spectre va changer en permanence en fonction de la composition fréquentielle au cours du temps, et si vous mettez « 30 secondes » votre courbe sera certes être très stable, mais après un changement de réglage pendant la mesure, il vous faudra 30 secondes pour en voir l’effet…

L’astuce consiste alors à effectuer une moyenne glissante : la mesure se fait en continu (case « Mesure continue » cochée), mais, par exemple ici, seuls les événements des 8 dernières secondes comptent dans la moyenne (« Temps de mesure » = temps d’intégration sur 8 secondes) :

RéglagesREAR65

  • Combien de temps mesurer :

Là, ce n’est pas paramétrable, ou alors il faut définir le paramètre « Temps de mesure » et décocher « Mesure continue » : la mesure s’arrêtera quand le temps sera atteint. Dans ce cas, le spectre à long terme serait intégré sur 8 secondes puis la mesure s’arrêterait.

Une autre solution consiste à laisser le signal tourner en boucle avec « Mesure continue », et à arrêter ni trop tôt ni trop… quoi ? J’en avais déjà parlé : il est important de laisser la mesure en niveau de sortie appareillé (REAR) se faire au moins 10 secondes, et laisser passer le phonème /ch/ présent dans l’ISTS et qui fait littéralement exploser le niveau de sortie à 2/4KHz avec certains appareils; il est présent vers 12/15 secondes.

En conséquence, une mesure sur 15 à 20 secondes semble bien et permet de modifier un ou deux réglages et d’avoir le temps d’en visualiser l’effet (8 secondes après dans l’illustration ci-dessus). Le temps de mesure se fait au jugé par l’audioprothésiste, et en général, on peut se fixer un repère d’arrêt, par exemple vers ce qui ressemble à « poderos » dans l’ISTS (env. 18 secondes).

AN: bien sûr, en mesure de gain d’insertion, le temps n’est pas aussi important puisqu’en général le REIG est le même au cours du temps (à 1 ou 2dB près). Les premières secondes de la mesure donnent la « bonne » mesure. Compter donc 5 à 10 secondes de mesure en REIG pour laisser à l’appareil le temps de se stabiliser.

  • Analyse temporelle « de base » = min/max :

Jusqu’à maintenant c’est du spectral (niveau/fréquence), mais la chaîne de mesure peut analyser, dans le temps et dans chaque tiers d’octave, les événements les plus forts (les crêtes du signal, niveaux dépassés seulement 1% du temps) et de plus faibles intensités (les vallées du signal, niveaux dépassés 70% du temps).

Case à cocher: « Afficher min. -max », sans cocher aucune des autres cases (très important). Vous obtiendrez alors la dynamique du signal de parole (à environ +12/-18dB du spectre à long terme). Cette dynamique n’est pas calculée avec la même moyenne que « Temps de mesure » (ici les 8 dernières secondes du signal mesuré en sortie), mais elle a sa propre constante de mesure, qui est de 5 secondes, non modifiable. Donc vous pouvez avoir une constante de mesure pour le spectre à long terme, alors que les événements « min/max » (vallées/crêtes) ont leur propre constante de temps de 5 secondes. Pourquoi 5 secondes ? parce que la fenêtre temporelle d’analyse est de 23ms, mais que le câble USB ne pouvant pas transporter autant d’informations, deux blocs d’analyse de 23ms sont moyennés, ce qui donne une fenêtre globale de 46ms (information reprise brute d’Interacoustics). Et comme il faut faire au minimum 100 mesures pour faire une analyse percentile correcte, on a donc 100*43ms= environ 5 secondes, temps minimal d’intégration.

Cet affichage vous donne la dynamique du signal avec une résolution fréquentielle de 43Hz.

  • Analyse temporelle « renforcée » :

Au lieu de cocher « Afficher min. _max », qui correspond à des valeurs « percentile 30<–>percentile 99″, vous souhaitez définir vous même l’analyse percentile du signal. Vous allez donc cocher et définir les zones qui vous intéressent dans « Analyse percentile ». En passant, si vous cochez 30% et 99%, ça revient au même que «  »Afficher min. _max »…

Donc à réserver à ceux d’entre nous qui veulent plus… pointu, genre analyse du 39ème percentile !

Cette analyse se fait sur les mêmes constantes que « min/max. »= 5 secondes, quelle que soit la constante de temps utilisée pour l’intégration du LTASS, et pour les mêmes raisons citées précédemment.

Cet affichage vous donne la dynamique du signal avec une résolution fréquentielle de 43Hz.

  • Analyse percentile « idéale » (normalisée) :

Toutes les chaînes de mesure analysent le signal par fenêtres temporelles successives. Certaines par fenêtres de 125ms, d’autres par fenêtres plus courtes. C’est le cas de l’Affinity qui peut réaliser une analyse toutes les 23ms, mais dont le port USB limite en réalité la vitesse. Comme son nom ne l’indique pas vraiment, l’analyse percentile analyse le signal dans le temps (ce n’est plus du spectral) afin d’en donner la répartition des différents niveaux en pourcentage, par tranches de 1%.

Après une analyse percentile en règle, la chaîne de mesure sera capable de vous dire que 37% du temps, le signal a dépassé telle valeur; que 2% du temps il a dépassé telle valeur, etc.

Donc, pour faire une analyse percentile correcte, il faut faire 100 mesures, au minimum. C’est ce à quoi correspond la case à cocher « Centiles pour mesure complète ». Certes, vous le remarquerez, la chaîne de mesure affichera bien la dynamique du signal sous forme de petits rectangles dans chaque bande de tiers d’octave (voir graphique ci-dessous pour analyse percentile 30/99) avant d’avoir atteint 15 secondes, mais cette analyse percentile ne sera complète (et donc fiable) qu’à partir de 15 secondes (après 200 mesures environ) , mais dans certains cas (plusieurs zones percentiles analysées), cette intégration pourra prendre jusqu’à 45 secondes (les crêtes et vallées se figent alors progressivement au cours de la mesure):

REAR65

Ce qui implique que si vous décidez de cocher cette option (recommandée…), vous avez alors deux constantes de temps en jeu: le spectre à long terme qui évolue ici dans une fenêtre glissante de 8 seconde, et l’analyse percentile qui elle, évolue dans un autre espace-temps (Igor et Grichka BOGDANOV, sortez de ce corps !!!!!), de 15 à 45 secondes. Vous l’avez peut être expérimenté: vos changements de réglages se voyaient relativement vite sur le LTASS, mais très lentement sur les crêtes/vallées en cochant « Centiles pour mesure complète ». Mais peut être n’aviez-vous pas osé…

AN: sans cocher cette option, il ne sera pas possible de cocher et donc d’obtenir la valeur suivante « Ratio de compression de la dynamique vocale ».

A l’écran, la zone dynamique donne progressivement la sensation de se « figer » au fur et à mesure que le test progresse. Une modification de réglage ne se visualisera alors quasiment pas sur la dynamique (à moins de refaire une mesure) alors qu’elle se visualise plus rapidement sur le spectre à long terme.

  • 1/3 octave and overlapping time windows:

Paramètre modifiant la zone temporelle d’analyse, en l’élargissant sur une fenêtre de 92ms, ce qui correspond à la norme de mesure IEC 60118-15. Cette norme définit les paramètres de mesure permettant une analyse percentile standardisée, mais également, pour ce qui suit, le calcul du ratio de compression de la dynamique vocale.

Vous trouverez des informations sur ces points dans ce document de travail qui a précédé la norme IEC 60118-15.

Cet affichage vous donne la dynamique du signal avec une résolution fréquentielle d’un tiers d’octave (et non plus 43Hz).

  • Ratio de compression de la dynamique vocale:

Ca c’est encore une autre histoire et je vous en avais déjà parlé.

Il s’agit de la case à cocher « Show dynamic compression ratio » qui vous donne dans chaque tiers d’octave la compression de la dynamique vocale entre l’entrée et la sortie sous forme de chiffres de 0.xx à plus de 2 (mais rarement plus de 2 quand même). Ce calcul n’est pas possible sans avoir modifié la fenêtre temporelle d’analyse à 92ms par le paramètre « 1/3 octave and overlapping time window ».

Afin de pouvoir mesurer la compression entre le signal à l’entrée de l’appareil et le signal à la sortie, il va falloir que la chaîne de mesure les aligne temporellement de façon très précise (précision du décalage inférieure à 10ms):

T_shift_speech_signalSans cet alignement, les mêmes zones temporelles (et donc spectrales) ne seraient pas analysées avant/après, ne permettant pas un calcul fiable du ratio de compression de la dynamique vocale.

AN: ce calcul de ratio nécessitant de connaître le signal à l’entrée pour le comparer au signal de sortie (d’où l’alignement des deux signaux), la chaîne de mesure crée alors un fichier .spectra avant la mesure. Il n’est donc pas possible d’effectuer ce calcul « à la volée », c’est à dire en live avec le Visible Speech.

Pour aller plus loin dans la compréhension de ces analyseurs spectraux et temporels que sont nos chaînes de mesure, je vous conseille la lecture de ce document passionnant in french dans le texte pour une fois (merci Franck ;-) ).

 

Bons paramétrages !

Et bon WE à tous !!

Merci à Dennis Mistry (Interacoustics) pour ses explications.

REMFit Bernafon – Le fait-il bien ?

Written by xavdelerce on . Posted in Affinity, BERNAFON, Chaînes de mesure, Etude de cas, Marques, mesure in vivo, mesure in-vivo, RECD, SPLoGramme, TEN-Test, transposition fréquentielle

RemFit désigne la passerelle entre le logiciel Bernafon Oasis (version 19) et Affinity (version maxi 2.3).

Bernafon et les autres (sauf Starkey et Widex…) récupèrent déjà les données REM type REUR et RECD, mais le concept va plus loin en pilotant directement la mesure in-vivo d’Affinity par le logiciel de réglage. A noter que Siemens fait déjà ça et même Widex, il y a très lontemps pilotait Aurical depuis Compass (et ça marchait !).

Le but: appuyez sur le bouton « Start » et le logiciel vous met l’appareil sur cibles. Magnifique !

Test !!

Le patient test:

image1

Bien sûr, comme tout le monde, quand on teste un nouvel appareil ou une nouvelle fonctionnalité, on prend le pire de nos patients (le pire des audiogrammes). C’est de bonne guerre !

Dans ce cas précis, les appareils choisis sont des Acriva 7 Rite adapté en dômes ouverts. Le TEN-Test est positif dès 3KHz, donc la correction se fera jusqu’à 2KHz et transposition fréquentielle (pardon « Frequency Composition » !) sur l’intervalle de mon choix (voir post sur le sujet plus bas).

Que fait RemFit:

REMFit

Un conseil: faire la calibration anti-larsen avant la MIV, le gain disponible réel étant bien supérieur des fois à l’estimation logicielle.

Il faut d’abord mettre des sondes in-vivo sur le casque REM et les calibrer par le logiciel Oasis:

Calib Sondes

Les sondes sont calibrées comme en MIV « classique »: sonde de mesure devant le micro de référence, le tout face au HP.

La MIV par le logiciel se fait par défaut à 65dB SPL d’entrée, mais on peut ajouter les intensités 50 et 80dB SPL par défaut dans le logiciel ou à la demande:

REAG cible

Le petit côté magique: en fait à Berne, des milliers de marmottes, au moment où vous appuyez sur « Droit », « Gauche » ou « Les deux », prennent le contrôle de votre PC et vont faire les mesures, plusieurs fois s’il le faut, automatiquement, jusqu’à ce que les cibles soient atteintes au mieux !

Ah non, les marmottes qui plient le papier d’alu, c’est un autre truc Suisse…

Bref ! Ca marche effectivement tout seul et vous voyez de façon miraculeuse les appareils se régler seuls en plusieurs étapes automatiques. Pour peu que vous ayez fait votre audiométrie aux inserts, que le logiciel ait récupéré un RECD, et donc que vos cibles soient précises au tympan, tout devrait donc coller au mieux:

REMFit ajustés

Ici, le niveau 80dB n’a pas pu être émis (c’est trop fort, il faudrait plutôt 75dB SPL max.), et il faut le décocher pour ne pas bloquer le test. Le logiciel n’est pas content car il n’est pas « sur cibles » (à 3K et plus), et c’est là que l’on voit la différence entre un cerveau humain (« Mais c’est ce que je voulais ! ») et la machine (« J’ai pas pu taper le 3 et 4KHz dans les cibles. End of message ! »), donc avertissement. Mais nous savons, nous les humains, que c’est mort/désafférenté au-delà de 3KHz, et qu’il n’est pas important d’aller y mettre de l’information ! Rage against the machine !

Et ça marche ?

REAR REMFit

Et oui ! Pile poile ce que je voulais.

Avouons quand même: une MIV avec ISTS et calcul des CR de la dynamique vocale, vous avez plus d’information qu’avec REMFit, non ?

Donc oui, ça marche, mais quitte à mettre une sonde, pourquoi ne pas passer directement sur la chaîne de mesure avec toutes les subtilités et les informations apportées par les signaux vocaux réels.

D’autant plus qu’ici, la transposition était proposée par le logiciel à partir de 2.9KHz, en plein dans la zone inaudible pour le patient, et seule une « vraie MIV » pouvait mettre en évidence qu’il fallait rabaisser son point de départ:

FC REMFit

Pour ce qui est de la mesure in-vivo de l’énergie transposée, voir ce post.

Bravo quand même à Bernafon, beau travail d’interface Oasis/Affinity. Seul regret: les courbes de MIV ne sont pas stockées dans Noah.

Prochain test: Oticon et sa MIV intégrée, qui, elle, permet l’utilisation de signaux vocaux. A suivre…

Sibilabit ergo metior

Written by xavdelerce on . Posted in anti larsen, Audiologie, Audiométrie tonale, Investigations audiologiques, Logiciels de réglage, Marques, mesure in-vivo, PHONAK, RECD, Réglages des appareils, SPLoGramme

Toi aussi, viens sur le Blog audioprothésiste et améliore ton latin(*) !

Un brevet vient d’être déposé (fin 2011) par notre fabricant helvète préféré (…): le shmilblick consiste à mesurer (ou plus exactement « estimer ») le RECD par l’appareil auditif, sans mesure directe par sonde en fond de conduit, mais par seuil d’apparition du larsen.

La technique n’est pas nouvelle chez ce fabricant, et elle ne semblait pas donner de résultats précis, en l’ayant testée sur des sujets très « déviants ». Mais ça, c’était avant semble t-il, et les audiologistes de la marque y croient vraiment: à tel point qu’ils ont mené des recherches en labo afin de tenter de mettre en évidence une corrélation entre seuil d’apparition du larsen et RECD:

 

Bon, le 1500Hz et sup. à 5000Hz semblent récalcitrants (????) mais pour le reste ça semble assez bien corrélé (même le RECD de la zone 160 à 480Hz est corrélé fortement à l’apparition du larsen dans les aigus !).

Certes, ça reste une estimation statistique sur un nombre x de sujets, jamais étudiée auparavant (à ma connaissance, je n’ai rien trouvé sur le sujet), mais qui semble justifier un dépôt de brevet.

Que penser de tout ceci:

  • Génial, il y a encore des choses à découvrir en audiologie prothétique ! Il fallait y penser.
  • Partant du principe que les audios travaillent en grande majorité au casque, et donc ne mesurent pas de RECD, voire ne font pas de MIV, les fabricants veulent éviter au maximum de « prendre des risques » en mettant sur le marché des aides auditives toujours plus performantes, mais dont les performances seraient totalement annihilées par une adaptation médiocre (mauvaise estimation des seuils au tympan, donc des niveaux appareillés atteints au tympan). On les comprend.
  • Partons du principe que les audio(logiste)s du monde entier font leur maximum pour satisfaire leurs patients: les aides auditives fonctionnant de mieux en mieux et s’adaptant nettement plus précisément qu’il y a 20 ans, pourquoi ne pas envisager dans les prochaines années travailler SANS professionnels de l’adaptation, en tout cas pour une « gamme grand public » ? « Ah bè non alors ! » (voix de Bourvil).
  • Nous travaillons aux inserts, nous mesurons le RECD, nous faisons de la MIV: quel est l’intérêt de cette recherche ? On sait déjà ce qui se passe au tympan.

Merci à CG pour l’info.

 

*Merci Google Traduction quand même…

R & D: mesurer les seuils auditifs en dB SPL au tympan

Written by xavdelerce on . Posted in Audiométrie tonale, Chaînes de mesure, Investigations audiologiques, mesure in-vivo, RECD, REDD, SPLoGramme

Vous avez été intéressés par ça.

Mais malgré cette extraordinaire « invention », cette fonction de mesure en dB SPL des seuils au tympan, ce système simple de mesure du SPLoGramme n’a pas été implémenté sur les matériels actuels.

Et vous pensez (et vous avez raison) qu’une partie du succès d’une adaptation passe par une connaissance précise du SPLoGramme.

Il reste donc la solution audiométrique des inserts EAR, rendue encore plus robuste par la mesure du RECD.

Tout ça pour quoi ?

Pour éviter ça:

Régression des MIV réalisées sur 50 patients, base audiométrique casque - X. DELERCE, JB BARON - 2012

Et ça, c’est ce qui se passe en fond de conduits, lorsque vous mesurez vos seuils au casque, et que vous effectuez ensuite le pré-réglage de vos aides auditives. Dans un monde idéal, si nous (les audios), ou eux (les fabricants), connaissions le seuil en dB SPL au tympan de nos patients, tous les petits points jaunes (mesures sur 50 patients/50 oreilles/de 500 à 4000Hz/5 fabricants) devraient être alignés sur la ligne noire en pointillés (la cible) ou jaune. A ce moment là, ce qu’indiquent les logiciels correspondrait à ce qui se passe réellement dans le conduit. Les aides auditives seraient « sur cibles » et le réglage (accompagnement) pourrait commencer sur de bonnes bases. Pour rattraper, cette énorme imprécision, il va falloir passer de nombreux RDV en tâtonnements divers, mesures en champ libre, etc. Je précise quand même que dans ce lot, certains fabricants s’en tirent un (tout petit) peu mieux que d’autres, mais d’un « chouia ».

Vous pensez qu’en mesurant les seuils avec l’aide auditive (audiométrie in-situ), on obtiendra une meilleure « adaptation » à la cible, donc que le fabricant arrivera mieux à estimer le seuil au tympan ?

On reprend les mêmes:

Régression des MIV réalisées sur 50 patients, base audiométrique in-situ. X.DELERCE, JB BARON - 2012

 « Caramba ! Encore raté ! »* (* »L’oreille cassée », pour les connaisseurs…). Les pointillés verts (et jaunes pour le casque) donnent l’intervalle de confiance 95%. En gros, à 30dB SPL, vous ne savez pas où vous êtes… ! On est loin des 2 à 3dB (doublement de sonie) de tolérance.

Pas de mystères, pour savoir précisément se qui se passe en fond de conduit, il faut, soit y mettre une sonde, soit délivrer le signal (audiométrique) au plus près du tympan lors de l’audiométrie.

  • Dans le cas de la sonde, un des deux fabricants proposant une MIV par l’aide auditive ne proposera plus cette fonction sur ses prochains contours d’oreille. Pourquoi, alors que cela s’avère une technique redoutable de précision ? Parce que seulement 10% des audios l’utilisent au niveau mondial… (stats retours SAV). Très très dommage pour tout le monde.
  • Dans le cas de l’audiométrie, les choses semblent bouger si j’en crois un article de recherche récent: Behavioral Hearing Thresholds Between 0.125 and 20 kHz Using Depth-Compensated Ear Simulator Calibration.

Ne fuyez pas ! Sous le nom barbare de « Calibration sur simulateur d’oreille avec compensation de profondeur », semble se cacher le futur de nos audiométries. Les auteurs explorent une piste de calibration « in-vivo » permettant lors de l’utilisation d’inserts classiques (type EAR + mousses), d’estimer la profondeur d’insertion dans le conduit, et donc le volume résiduel entre l’extrémité de la mousse et le tympan, ce qui permettrait de connaître avec précision le RECD du patient lors de l’audiométrie. Tympans « sains » et conduits propres de rigueur !

Cet article ne semble pas financé par un fabricant d’aides auditives ou d’audiomètres, mais on peut penser que si nous, audioprothésistes, ne nous emparons pas de la rigueur et de la précision des mesures au tympan, d’autres le feront à notre place.

XD – JBB.

Les commentaires récents

Anonyme

|

Bonjour Xavier,
Merci pour ta question très pertinente.

Je ne pense pas que cela ait été fait car il faut savoir utiliser, à la fois, la liste de recrutement et le TEN TEST.

Pour ma part, je ne pratique (malheureusement) pas, pour l’instant, le TEN TEST et ceux qui pratiquent le TEN TEST ne connaissent peut-être pas l’existence de la liste de recrutement.

Sans aucun doute un très bon sujet de mémoire pour un étudiant de troisième année.
J’espère que ta question va susciter une (ou plusieurs) recherche en ce sens

xavdelerce

|

Bonjour Jean-Yves, et merci pour toutes tes remises à niveau.

Une éventuelle corrélation a t-elle déjà été recherchée entre un mauvais résultat au test de recrutement et un TEN Test positif ?

Jean-Yves MICHEL

|

Bonjour Xavier,
Merci pour tes questions.

1/ Le Professeur LAFON écrit, pour la liste cochléaire émise en exploration du champ auditif, en page 141 de son livre « le test phonétique et la mesure de l’audition » :
« La mesure est effectuée pour chaque oreille séparément, si la surdité est asymétrique, elle peut-être faite en biauriculaire pour deux courbes tonales identiques ».
Donc on peut comprendre que l’émission puisse être faite au casque.
J’ai choisi le champ libre car cela me permet de visualiser le gain prothétique vocal (différence entre le nombre d’erreur phonétique sans appareil versus avec appareil) alors que je ne le pourrai pas si la liste avait été émise au casque.
A l’appui de mon option champ libre je peux citer l’exemple en page 201-202 du Bulletin d’Audiophonologie année 1972 Volume 2 « Le Test Phonétique Théorie et Pratique » :
« …Atteinte auditive bilatérale d’étiologie inconnue. La perte moyenne est de 60 dB à droite comme à gauche. Appareillage biauriculaire par deux contours d’oreille. Le test phonétique montre une nette distorsion liminaire avec cependant une atteinte du champ auditif puisque l’on trouve à droite et à gauche une distorsion de 6 à 10% à 100 dB. L’usage des prothèses est bon, il ne reste que 4% d’erreurs avec les deux contours d’oreille 18% et 16% respectivement à droite et à gauche avec chaque contour utilisé isolément. Ce résultat montre que lorsque la distorsion n’est pas trop importante l’appareillage des deux oreilles séparément par contour améliore très nettement la perception de la parole (erreurs réduites des trois quart)… »

2/ Je balaye systématiquement, sans appareil, de 90 dB SPL jusqu’à 40 dB SPL sauf si avant 40 dB SPL j’atteins les 100% d’erreurs phonétiques, auquel cas je m’arrête là évidemment. Avec appareil, j’émets à nouveau les mêmes éléments aux mêmes niveaux. Je n’ai donc pas d’intensité de « départ » calculée à « seuil 2K + 10dB » ou autre.

3/ J’accorde une importance aux hauts niveaux (80 – 90 dB SPL) car il me semble important que mon appareillage ne génère pas plus d’erreurs phonétiques que ce que la personne en fait sans appareil. Je le vérifie donc.

J’espère avoir répondu à tes questions.

JYM

xavdelerce

|

Bonjour Jean-Yves

J’ai plusieurs interrogations:
1/ tu parles de niveaux d’émission en dB SPL pour l’administration des listes. Est-ce que ça veut dire que le test doit se faire en champ libre (ce que tu fais) ?
2/ comment est calculée l’intensité de « départ » (le confort) ? J’avais entendu dire « seuil 2K + 10dB » ?
3/ est-il réaliste de tester, à ton avis, l’intelligibilité au-delà de 75dB HL (au casque/inserts), en sachant alors que l’on va stimuler plusieurs bandes critiques avec l’augmentation globale de niveau, perdant du même coup en résolution fréquentielle et alors que l’appareillage, lui, n’aura pas une augmentation de niveau identique à toutes les fréquences et toutes les intensités ? Ce qui était valable à l’époque du Pr LAFON (technologie linéaire) avec une augmentation de niveau est-il valable aujourd’hui ?

Instagram @Audioprothese