Catégorie : Audioscan

C’est un peu l’absent de nos sessions de réglages in vivo : le MPO.

Je dis l’absent, car si on peut bien sûr visualiser le niveau « logiciel » du niveau de sortie maximum d’une aide auditive, il est souvent bien plus compliqué, hasardeux et inconfortable, de le tester et régler in vivo.

Continue reading

Vous aviez peut être répondu, par l’intermédiaire de ce blog, au sondage réalisé l’année dernière par Mme Capucine MARMORAT qui faisait alors une collecte d’informations sur la pratique de la mesure in vivo en France dans le cadre de son mémoire de D.E. d’audioprothèse.

Certains d’entre-vous ont également répondu à un questionnaire plus poussé, et peut être aussi demandé à leurs patients leur ressenti sur la pratique de la MIV par leur audioprothésiste.

Je voulais donc revenir, avec Mme MARMORAT, sur les résultats de son mémoire sous la forme d’un « mini-débat ».

Vous pouvez si vous le souhaitez télécharger son travail très instructif.

« Entrevue » :

Continue reading

Autant un écouteur vieillissant, un circuit défaillant, un bruit de fond quelconque sont faciles à détecter (BDF, distorsion harmonique ou d’intermodulation, etc.), autant la panne d’un microphone arrière est assez délicate à percevoir.

C’est pourtant une panne très handicapante pour le patient, car il n’y a plus de directivité dans le bruit, voire un déséquilibre D/G lorsque les appareils sont censés communiquer.

L’écoute de l’appareil ne donnera rien, et un test de directionalité au caisson n’est pas facile à mener : il faut avoir un caisson dédié, et le plus souvent, forcer l’appareil en directionnel par logiciel de programmation. Bref, il faut vraiment en vouloir…

Continue reading

A ma gauche, papy, en pure galalithe, rétractable en 3 parties, garanti 100% analogique. Période environ début XXème :

cornet

On peut estimer qu’à l’époque (autour de la 1ère guerre mondiale), ce cornet était vendu autour de 20 francs (anciens francs donc), ce qui donne aujourd’hui un prix équivalent de 60 à 70€.

Continue reading

J’avais déjà abordé ce sujet dans un ancien billet. L’éventualité d’avoir à apporter la preuve de l’efficience d’un appareillage auditif n’est pas exclue dans le futur; de même que la justification du choix d’un modèle face à un financeur (les temps sont durs…). Il faudra donc peut être un jour démontrer l’efficacité des divers systèmes de décalages fréquentiels et d’argumenter nos choix prothétiques. Mais sans y être contraints par qui que ce soit, nous pouvons (simple curiosité) avoir envie de constater l’efficacité de ces systèmes, ou de les démontrer à nos patients.

DSLi/o (laboratoire d’audiologie de l’UWO pour University of Western Ontario), a créé récemment dans ce but des fichiers sons permettant de mesurer l’efficacité des différents systèmes de décalages fréquentiels (transposition, duplication, compression fréquentielle).

Il s’agit de signaux sonores reproduisant le phonème /s/ et /sh/(anglais) ou /ch/(français) noté /∫/ en alphabet phonétique international. Le /∫/ présente un pôle de bruit constant dans la zone 2000-8000Hz; le /s/ présente un pôle de bruit constant dans la zone 4500-10000Hz.

Ces signaux ont été créés à partir de l’ISTS, par extraction des zones fréquentielles respectives du /s/ et du /∫/ dans le signal d’origine, puis filtrage d’un bruit blanc par un filtre issu de ces zones fréquentielle :

ISTS_SH_S

Si vous regardez les spectres de ces fichiers, vous constaterez que ces phonèmes ont un facteur de crête très faible (normal pour ces phonèmes), et qu’en conséquence leur niveau moyen dans les aigus coïncide avec le percentile 99 de l’ISTS dans les zones fréquentielles concernées. C’est un bruit constant, avec les précautions d’usage qui s’imposent avec ce genre de signal.

Hélas, les fichiers .wav mis à disposition par DSL sur leur site (voir lien en début de ce billet), ne sont pas utilisables par les chaînes de mesure distribuées en France, pour des raisons de fréquence d’échantillonnage : ils ont été créés pour la Verifit 2 d’Audioscan.

Mais la maison GENY-DELERCE-MICHEL, qui ne recule devant aucun sacrifice, a créé une StartUp domiciliée au Panama, et alimentée à hauteur de 153,4 millions de dollars par un fonds de pension de retraités de Floride. Et donc :

  • vous les offre en cadeau Bonux et téléchargement dans une fréquence d’échantillonnage adaptée aux chaînes de mesure les plus distribuées chez nous !! Ce sont les deux fichiers NBN S.wav et NBN SH.wav
  • en deuxième cadeau Bonux, avec les 47 millions de $ qui nous restaient, et avant que le fisc nous tombe dessus, vous a créé à partir du spectre des deux fichiers précédents, deux ISTS filtrés : ISTS_SH.wav et ISTS_S.wav. Pour cela, NBN S et NBN SH ont été analysés, et un filtre a été créé correspondant à leurs spectres. Puis ces filtres ont été appliqués à l’ISTS pour créer deux fichiers distincts. Why ? (comme on dirait dans la langue du secoueur d’épieu…..) Parce qu’il est probable que certaines aides auditives prennent les deux premiers signaux comme du bruit. Je vous laisse apprécier le risque, j’attends vos retours, mais vous aurez mon avis sur la question en lisant un peu plus loin… Voici l’analyse spectrale et percentile (puisqu’ils ont une dynamique) de ces signaux maison:

ISTS_filt_SH-S

Vous l’avez compris : dans les deux cas (ISTS filtré ou « bruit phonémique »), on va utiliser le principe de la « zone fréquentielle tronquée » qui va servir de zone « réceptacle » afin de visualiser l’énergie transposée/compressée/dupliquée. Il est donc facile, en deux mesures « décalage pas activé »/ »activé », de vérifier et régler l’effet d’un décalage fréquentiel.

Niveaux d’émission du /∫/ et du /s/ :

En analysant l’ISTS, on peut extraire le /∫/ et le /s/ à respectivement 8,74  et 12,65 secondes du début du signal. On obtient ces niveaux :

CH12_65_S8_74_ISTS

  • Pour le  /∫/ :
  • Pour le /s/ (plusieurs segments mis bout à bout = cigale, peuchère !) :

Le niveau est légèrement plus important pour le /∫/ que le /s/, mais la Sonie est nettement plus importante pour le /∫/, de bande passante plus large.

Précautions d’emploi :

  • Pour arriver au « niveau équivalent de crête » des spectres des fichiers NBN S.wav et NBN SH.wav par rapport à l’ISTS, il ne faudra pas émettre en MIV ces signaux à 65dB SPL, mais :
    • pour le /∫/, 65dB SPL – 6dB = 59dB SPL
    • pour le /s/, 65dB SPL – 10dB = 55dB SPL
  • Pour les fichiers ISTS_S.wav et ISTS_SH.wav, le niveau d’émission « équivalent voix moyenne » sera :
    • pour le /∫/, 65dB SPL – 15dB = 50dB SPL
    • pour le /s/, 65dB SPL – 15dB = 50dB SPL

Vous pouvez enregistrer NBN S.wav, NBN SH.wav, ISTS_S.wav et ISTS_SH.wav dans vos dossiers de fichiers sons REM ad hoc selon votre configuration matérielle, télécharger les tests suivants prédéfinis pour Affinity ou FreeFit, et techter tout cha ! Attention, tests basés sur une audiométrie obtenue aux inserts (à modifier si vous travaillez au casque).

Où enregistrer ces fichiers sons dans vos PC ?

  • Pour Freefit, dans ce dossier :

Chemin Freefit

  • Pour Affinity, dans ce dossier :

Chemin AffinityAttention pour Affinity, le dossier Windows « ProgramData » est un dossier caché. Il faut autoriser Windows dans certains cas à afficher ces dossiers cachés. Penser également à demander à Affinity à rechercher ces nouveaux fichiers dans le répertoire REMSoundFiles.

Questions pratiques

  • DSL fournit un document très exhaustif, à la base pour l’adaptation pédiatrique, mais dont les pages 44 à 62 détaillent l’utilisation de ces signaux en pratique quotidienne.
  • Utiliser plutôt le test REM avec les fichiers bruités de DSL ou l’ISTS filtré ? Pour avoir testé les premiers (de DSL), vous constaterez peut être comme moi que le gain, après quelques secondes d’émission, se met radicalement à diminuer : c’est bien du bruit… C’est pourquoi, sans être présomptueux, je trouve plus intéressant d’utiliser les deux fichiers d’ISTS filtrés par la maison !
  • Le fichier ISTS_S.wav émis à 45dB SPL est-il trop faible ? Vous serez peut être surpris de la faiblesse d’émission (surtout ISTS_S.wav), mais pédagogiquement, il est très intéressant de se rendre compte du très faible niveau du /s/ dans la réalité (45dB SPL). Le /∫/ est moins surprenant. C’est également là que l’on se rend compte du côté un peu illusoire de la perception à 6kHz, même avec une transposition fréquentielle !
  • Freefit permet-il d’utiliser ces fichiers dans PMM « Réponse Avec Aide Auditive » ? Non, ces signaux n’apparaîtront pas dans la liste des signaux de test disponibles. Il faut utiliser le mode « Freestyle » pour y avoir accès dans la banque de données de signaux.
  • Ces signaux sont-ils disponibles d’origine sur les chaînes de mesure ? Pour être précis, les deux fichiers « bruités » de DSL NBN S et NBN SH seront présents dans l’Affinity version 2.8 à partir de juin 2016. Dans Freefit, ils sont déjà présents sous les noms Ling6 S et Ling6 SH. Les fichiers ISTS_S et ISTS_SH, eux, n’existent nulle part : exclusivité du blog !

Exemple

Voici un patient pour qui le seuil à 6kHz en dB SPL au tympan ne permet pas la perception du /s/ (courbe rose-violet). L’activation d’une duplication fréquentielle ici (Bernafon Saphira 5 CPx) permet de visualiser le décalage apporté à la zone 6kHz : la perception devient possible (à défaut d’être souhaitable…).

Dupli_S

On s’aperçoit également que cette duplication est proposée par défaut à un niveau « moyen » par le logiciel, et qu’elle est peut être un peu forte, car supérieure en intensité à la zone d’origine. Un réglage plus léger sera peut être mieux supporté (mais le patient ici vit très bien avec ce réglage depuis maintenant un an).

Conclusion

A l’usage, je pense que le fichier /∫/ est peu utile; on est encore dans la bande passante « utile » de l’appareillage. Le cas de /s/ est plus intéressant pour diverses raisons :

  • le fichier NBN S.wav s’avère quasiment inutilisable chez certains fabricants, le gain lors de l’émission diminuant drastiquement
  • Si on utilise ISTS_S.wav, la mesure devient possible, mais on s’aperçoit qu’il est illusoire de faire percevoir ce phonème dans une grande majorité des cas (surdité trop importante dans la zone d’émission et la zone adjacente)
  • Toujours en utilisant le signal ISTS_S.wav, le niveau d’émission est plutôt faible, et on est en permanence en limite de point d’expansion chez certains fabricants. Vous serez peut être surpris de voir que quelques aides auditives n’appliquent aucun gain à ce signal (la majeure partie du temps sous le point d’expansion), ou des variations de gain « explosives » (à des moments au dessus du point d’expansion, à d’autres en dessous), ou une amplification normale (le signal est en permanence au dessus du point d’expansion, réglé assez bas). Ce phénomène avait été décrit sur le blog Starkey à la suite d’un article de 2009 de Brennan et Souza (la figure 6 montre bien l’effacement de la consonne par la hauteur croissante du point d’expansion).

Bref, pour nous français, chez qui le pluriel et le possessif sont muets, la perception du /s/ n’a pas la même importance que chez les anglo-saxons, puisque l’article donne le plus souvent l’indication d’un pluriel, la suppléance mentale faisant le reste. De plus, toujours pour le /s/, son identification n’est pas du tout la même s’il est en dernier phonème d’un mot (le pluriel anglais) ou au milieu d’un mot. Dans ce dernier cas, sa perception sera facilitée par les transitions formantiques, rendant inutile un décalage fréquentiel.

Le décalage fréquentiel serait-il un réglage adapté aux anglo-saxons en priorité ? Allez savoir…

Bons tests aux plus téméraires !

Non, ce n’est pas un billet tiré de « philosophie magazine » ou inspiré par une quelconque mouvance « mindfulness », quoique… allez savoir !

Je reviens à nos moutons audioprothétiques, et là normalement vous allez vous dire que le rédacteur de ce billet est totalement obsédé par ce sujet de… dynamique vocale !

Oui, je vais encore aborder le sujet car il me semble important, et même crucial de connaître l’état de cette dynamique à l’entrée de l’aide auditive, et à sa sortie. Surtout à sa sortie : une aide auditive qui lisserait les contrastes temporels de la parole par une compression trop importante des « crêtes » ou une amplification exagérée des « vallées » en réduirait le contraste dynamique, réduisant du même coup les chances du malentendant appareillé d’extraire ces informations dans un bruit par nature souvent plus stationnaire que la parole.

Mais puisque l’on parle de « dynamique », encore faut-il savoir de quoi on parle. Nous avons coutume de considérer que la parole a une dynamique de 30dB environ. C’est à dire que si l’on mesure son niveau par bandes de 1/3 d’octaves à long terme (ex : 1 minute), les crêtes se situent 12dB au-dessus de ce niveau à long terme, et les vallées 18dB en-dessous, environ.

Cette dynamique de 30dB n’est pas « plaquée » autour du LTASS, elle est le résultat d’une analyse statistique de la distribution des niveaux du signal. Dans le cas de la chaîne de mesure in-vivo, pendant toute la durée de la mesure, la chaîne de mesure « classe » les différents niveaux atteints, et va se retrouver avec une courbe de distribution suivant une loi normale (cas de l’ISTS), ou de densité autre (signaux non vocaux par exemple), et dont les niveaux se répartissent autour d’un niveau médian (= dépassé, ou non-atteint 50% du temps), et qui indique, par exemple,  que 10% du temps le signal  a atteint tel niveau, que 30% du temps il a dépassé tel niveau, etc.

C’est une donc ce que l’on appelle l’analyse percentile du signal. Je vous laisse imaginer le calcul processeur nécessaire pour faire cela « à la volée », mais aussi en parallèle compiler et classer sur le long terme (ex : pendant 45 secondes).

Classer les différents niveaux va permette au final de définir la « dynamique » que nous avons l’habitude de visualiser entre le 30ème percentile (dépassé 70% du temps = les vallées) et le 99ème percentile (dépassé 1% du temps = les crêtes). Et on a coutume de dire que cette dynamique 30/99ème percentile est de 30dB.

Oui… mais pas tout à fait ! Ce calcul est totalement dépendant de la fenêtre temporelle d’analyse du signal. Si on voulait utiliser une analogie avec la photographie ce serait le temps d’ouverture de l’objectif de l’analyseur. En photo, plus longtemps vous « ouvrez », plus vous faites entrer de photons sur le capteur. Si vous êtes en plein jour et que vous ouvrez très longtemps, votre photo sera « cramée », c’est à dire blanche…

La chaîne de mesure fonctionne un peu comme un objectif : elle prendra une « photo » selon un temps d’ouverture, et le résultat de l’analyse percentile (et donc la dynamique du signal) sera très dépendant de nombreux facteurs. Parmi ceux ci, il y a la résolution temporelle de la fenêtre de la FFT, et cette dernière peut avoir une influence sur la résolution fréquentielle de la mesure (voir plus loin).

Pour faire savant, si un signal est échantillonné à 44100Hz (Fs) et que la FFT est réalisée avec un bloc de 1024 échantillons (c’est à dire N = 1024 échantillons temporels, correspondant à une taille mémoire imposée par le matériel), la résolution temporelle sera de N/Fs = 1024/44100=23ms, et la résolution fréquentielle sera de Fs/N = 44100/1024=43Hz. N est toujours une puissance de 2 dans les analyseurs physiques. Le principe de la FFT (Fast Fourier Transform) utilisée, entre autres, dans nos chaînes de mesure est donc de prendre ces 1024 échantillons temporels de 23ms et 43Hz de « large » qui vont aller remplir la mémoire de l’analyseur pour ensuite passer dans un algorithme de calcul FFT. Si on voulait avoir une résolution temporelle de 1 seconde, il faudrait remplir une mémoire adéquate avec 44100 échantillons (dans ce cas, le nombre N d’échantillons temporels serait égal à la fréquence d’échantillonnage Fs).

Dans nos chaînes de mesure, il va y avoir, comme dans tout analyseur matériel, plusieurs limitations. L’une est la taille de la mémoire (qui limite le nombre d’échantillons à analyser), l’autre est la vitesse de transmission du port USB qui limite la résolution temporelle de signaux pouvant transiter vers le PC à des blocs de 46ms (donc impossible de faire transiter des informations plus fines en temporel). Ce n’est pas forcément un problème, car l’analyse idéale, définie par la norme IEC 60118-15 (qui régit l’analyse des signaux de mesure in-vivo), souhaiterait que la mesure in-vivo soit réalisée avec une résolution temporelle de 125ms. Mais c’est, pour l’instant, techniquement difficile, car pour y arriver il faudrait, au choix :

  1. diminuer la fréquence d’échantillonnage du signal, et donc sa bande passante (voir la suite)…
  2. ou alors, si on voulait conserver une fréquence d’échantillonnage de 44100Hz afin de ne pas perdre de bande passante mais garder une résolution temporelle de 125ms (0,125sec), effectuer 0,125ms x 44100Hz = 5512,5  blocs temporels pour le calcul de la FFT, soit 5 fois plus qu’actuellement (en fait, ce serait 2 puissance 12 ou 2 puissance 13 blocs temporels pour être exact).

Tout est une question de moyens financiers que l’on veut mettre dans du matériel possédant des capacités aussi importantes… Notez quand même qu’à l’heure actuelle, un matériel distribué en France par la société AURITEC, le Verifit2 d’Audioscan, permet une résolution temporelle de 128ms avec une bande passante (in-vivo et coupleur) de 16kHz, donc 4096 blocs temporels (32000Hz*0,128ms) pour le calcul de la FFT. Il s’agit d’une chaîne autonome (non reliée en USB au PC), tournant sous Linux, avec processeurs dédiés.

Si on applique cette méthode d’analyse idéale (norme IEC 60118-15), donc avec fenêtre de 125ms (donc N=Fs x 0,125ms = 5512,5), pour un signal (ISTS) émis à 65dB SPL, on obtient :

ISTS_30_99_125ms_65dB SPL

En observant l’analyse ci dessus, on constate bien que la dynamique entre les percentiles 30/99 est d’environ 30dB à 3kHz,et d’environ 20dB à 400Hz.

Mais si on avait analysé le signal avec une fenêtre de résolution temporelle 1 seconde (N=44100 échantillons temporels), pour un ISTS toujours à 65dB SPL, on aurait eu :

ISTS_1s

La fenêtre d’analyse étant plus grande, et si on suppose que les zones faibles (comme les fortes) du signal sont très brèves, elles ont été « diluées » en quelque sorte avec les zones moyennes (entre les percentiles 50 et 65), plus représentées statistiquement. La dynamique a été divisée par 2 (env. 15dB à 3kHz). La parole peut être considérée comme un signal stationnaire… (Citation de Franck L. 😉 ).

Poussons le raisonnement à l’inverse, avec une fenêtre de résolution temporelle de 5ms (de l’ordre du phonème, avec N=220,5 écantillons temporels) :

ISTS_5ms

La dynamique du signal passe à 30dB à 400Hz, et environ 37dB à 3000Hz. Mais surtout, vous remarquerez la perte de résolution fréquentielle  dans les basses fréquences. C’est mathématique : la durée de la fenêtre temporelle doit être au moins 5 fois plus longue que la période du signal à analyser : donc ici pour 200Hz, fenêtre temporelle minimale = 5 x (1/200Hz) = 0,025 = 25ms. La fenêtre temporelle de 5ms n’est pas adaptée à l’analyse de signaux de 200Hz, et pour être exact, cette résolution temporelle ne permet même pas une analyse correcte de signaux inférieurs à 900Hz car leur période (= 1/fréq) est supérieure à la résolution temporelle de la fenêtre d’analyse… ce qui veut dire en clair que nous n’aurons jamais accès à des événements brefs (impulsionnels), dans les graves tout au moins avec les méthodes de type analyse FFT utilisées actuellement sur nos chaînes de mesure. Mais d’autres méthodes existent pour ces événements impulsionnels, et peut-être les verrons-nous dans de futurs modèles de chaînes de mesure…

AN : avec une résolution temporelle de 23ms sur une chaîne de mesure, la plus basse fréquence analysable correctement est de 5/0,023 = 217Hz. On comprend mieux pourquoi l’ISTS a été créé avec des voix de femmes et un fondamental laryngé de 200Hz, et pas des voix d’hommes avec un F0 à 125 ou 150Hz…

Et enfin, ce que font nos chaînes de mesure avec une résolution temporelle de 46ms (2 blocs de 23ms moyennés = 2 x 1024 points moyennés) :

ISTS_65dBSPL_46ms
Vous remarquerez que la dynamique percentile 30<–>percentile 99 est un peu plus importante que celle du signal analysé en 125ms. Tout est relatif donc dans ce genre de mesures et d’analyse de la dynamique du signal…

Le facteur temporel d’analyse, qui découle donc de la fenêtre FFT (1024 échantillons sur nos chaînes de mesure), a donc des répercussions sur la lecture des mesures. La dynamique de la parole (ou d’un autre signal) est tout à fait relative, en fonction des paramètres d’analyse, souvent dictés par le matériel. Les audioprothésistes (les fabricants de nos chaînes de mesures…) sont face à un dilemme :

  • nous donner accès à des événements très brefs et potentiellement agressifs pour le patient, en lecture de crêtes, mais en perdant de la résolution fréquentielle et en sachant que ce n’est pas possible en basses fréquences (avec les méthodes d’analyse actuelles)
  • nous donner accès à la meilleure résolution fréquentielle possible pour les réglages en perdant en résolution temporelle, et donc en risquant de ne pas avoir la lecture d’événements potentiellement agressifs…
  • … je résumerais donc ce dilemme avec une maxime de Pierre DAC : « Plus je pédale moins fort, moins j’avance plus vite » !

Il y a donc un compromis dans la mesure, pour l’usage en audioprothèse, et qui va être :

  • de ne pas descendre sous quelques dizaines de ms afin de garder une bonne résolution fréquentielle (en BF),
  • d’aller au-delà de 125ms afin de visualiser l’effet des compressions sur le signal amplifié par la lecture de sa dynamique,
  • … mais tout en sachant que se rapprocher de 125ms permet une bonne résolution fréquentielle (idéale selon la norme)…
  • … donc de se situer dans une fourchette d’analyse 40 <–> 125ms… c’est justement celle choisie par les fabricants de chaînes de mesure !
  • … et tout cela dans la mesure du possible d’une chaîne de mesure reliée à un PC et qui est limitée par son port USB ne pouvant transmettre des segments de plus rapides que 46ms !

On peut imaginer dans un futur pas si lointain la possibilité  de se rapprocher des préconisations de la norme IEC de 125ms, avec un port plus rapide, voire un système autonome (chaîne de mesure ayant une fréquence d’échantillonnage plus importante que 44100Hz, avec processeurs dédiés à l’analyse et tournant sous son propre OS). Allez savoir, il est bien possible que ce soit dans les cartons…

Mais pourquoi tout ce cirque avec une analyse précise de la dynamique ?

A des niveaux « normaux » (efforts vocaux moyens), la lecture précise de la dynamique du signal amplifié est réellement utile, car elle peut être détruite par une compression trop importante qui en lisserait les crêtes, mais, c’est moins connu, également par une amplification trop rapide et importante des vallées (réduction de la dynamique par le bas). C’est ce qu’avait montré Holube en 2007 (interview pour Audiology Online de l’initiatrice de l’ISTS) :

 

 

TA_TR rapides

Le graphique de gauche montre le signal amplifié par une aide auditive à temps d’attaque (TA) et temps de retour (TR) très rapides. Les vallées, dès qu’elles faiblissent, sont amplifiées très rapidement; les crêtes, dès qu’elles apparaissent sont lissées très rapidement également. Il en résulte une très nette diminution de la dynamique par rapport à un système plus lent (graphique de droite). Pour aller plus loin, vous pouvez également consulter ce document très intéressant (enfin, je trouve !).

Attention donc : sur quelques appareils, nous avons encore indirectement la main sur ces facteurs temporels, par le choix (obscur, j’adore !) de la « typologie du malentendant » et notamment un fameux choix « dynamique ». Les connaisseurs de ces fabricants reconnaitrons de qui je veux parler…

Juste pour vous montrer ce que devient le signal extrait d’un RSB 0dB, d’un appareil que j’avais testé précédemment sur ce blog, avant son amplification, puis après (émission à 65dBA, fenêtre d’analyse IEC 60118, de 125ms) :

Dyn ISTS in SNR0Dyn_voix extr SNR0

La dynamique est réduite après amplification, au maximum, d’environ 5dB. Il y a donc un respect de la dynamique du signal, même en milieu bruyant. Ce n’est pas toujours le cas… (des noms ! des noms !). Ce n’était pas du tout le cas il y a quelques années, et c’est là que les choses ont beaucoup évolué, il faut le reconnaître. Notez au passage l’amplification du signal @ 3kHz = 28dB.

Voilà ce que subit le bruit avant et après amplification par le même appareil, extrait du même mix à RSB 0dB :

Dyn ISTSnoise in SNR0

Dyn_bruit extr SNR0

Le bruit n’a pas de dynamique (c’est l’IFnoise), ce qui rend d’ailleurs « l’audition dans les vallées du bruit » très difficile; sa dynamique n’est donc pas affectée… puisqu’il n’en a pas. Notez au passage l’amplification du bruit @ 3kHz = 22dB, alors que les deux signaux ont été émis strictement au même niveau (RSB 0dB) et ont la même densité spectrale de niveau. Le signal est détecté, traité et amplifié de manière sélective (+6dB d’amplification par rapport au bruit).

Imaginons maintenant que la dynamique de sortie du signal n’ait pas été respectée (écrasée), cette différence d’amplification entre le signal et le bruit aurait été réduite à néant, car nous l’avons vu, la dynamique du signal avait déjà été réduite de 5dB par les compressions déjà « douces » (CR env. 1.2); une trop grande compression (protection) de la part de l’audioprothésiste aurait encore réduit cette dynamique, lui faisant perdre ses quelques dB d’émergence.

On le voit donc, la lecture de la dynamique du signal est extrêmement importante. Son respect par les algorithmes de traitement du signal est crucial. Pour info, la plupart des chaînes de mesure utilisent résolution temporelle de 46ms, mais en « overlapping », c’est à dire en faisant se chevaucher plusieurs blocs temporels à 50%, arrivent à 92ms de résolution temporelle, et donc se rapprochent des 125ms de l’idéal standard (j’en avais déjà parlé dans un billet traitant des diverses constantes de temps des chaînes de mesure in-vivo). Vous pouvez accédez à cette fonction dans le paramétrage de vos chaînes de mesure.

Tout cela montre bien la subtilité de toutes ces analyses, mais nous fait aussi prendre conscience (attention : psychologie magazine !) que nous voyons le monde, en général, à travers… une fenêtre !

###############################################

Atelier informatique

###############################################

Pour ceux qui seraient intéressés, cette analyse percentile du signal est réalisable avec une fonction (script) écrite pour le logiciel R.

Ce programme a été écrit par Nathan D. Merchant pour accompagner leur article sur l’acoustique des habitats écologiques. J’en ai modifié le code source afin de l’adapter à l’analyse percentile du signal au audioprothèse. Vous pouvez, si vous le souhaitez, en modifier également les bornes percentiles (ici j’ai défini 30, 50, 65, 95 et 99, dans le fichier Viewer.R). Vous trouverez le script de cette version modifiée ici. Téléchargez les fichiers PAMGuide.R et Viewer.R et mettez-les dans un dossier (votre bureau par exemple). Ouvrez R et définissez ce dossier comme répertoire de travail, puis tapez les commandes suivantes :

source("/votre dossier de destination/PAMGuide.R")

Vous pouvez aussi, sans taper cette commande, accéder au menu « Sourcer fichier » dans R et sélectionner « PAMGuide.R », puis taper :

PAMGuide(atype="TOL", plottype="Stats", lcut=200, Hcut=16000, N=5512.5)

Cette commande déclenche une boîte de dialogue vous demandant de choisir un fichier .wav pour analyse. Cette dernière est effectuée en 1/3 d’octave (TOL), en bande passante de 200 à 16000Hz, et avec fenêtre temporelle de 125ms (N=5512,5). Le paramètre temporel N est fonction de la fréquence d’échantillonnage du signal à analyser : si vous avez 44100Hz de f.e., N=44100 x 0,125 =5512,5. Pour un signal échantillonné à 96000Hz, avec fenêtre d’analyse de 46ms, N = 96000 x 0,046 = 4416. Dans le cas où vous souhaiteriez avoir les valeurs en dB SPL (comme ici) et non pas en dB relatifs, utilisez le paramètre « calib=1 », puis définissez la sensibilité en dB du paramètre Mh en fonction de votre calibration (ici, un fichier .wav de calibration à 94dB SPL a servi de référence pour définir précisément Mh).

Par exemple pour une analyse de l’ISTS (fichier son téléchargeable sur le site de l’EHIMA), en dB absolus (et RMS = 65dB SPL) et fenêtre temporelle de 1 sec. :

PAMGuide(atype="TOL", plottype="Stats", lcut=200, hcut=16000, N=44100, calib=1, Mh=-3.4)

Et pour finir, l’analyse standardisée IEC 60118-15 en audiologie/audioprothèse, pour l’ISTS :

PAMGuide(atype="TOL", plottype="Stats", lcut=200, hcut=16000, N=5512.5, calib=1, Mh=-3.4, winname="Hann", r=50)

Ca porte en général un doux nom du type « Sound Recover » (SR) ou « Audibility Extender » (AE). Le terme générique souvent utilisé est « frequency shifting » ou « frequency lowering » (décalage ou rabaissement fréquentiel).
On peut considérer que ces techniques ont franchement changé la vie des utilisateurs de ces systèmes, même si on peut discuter de l’apport d’intelligibilité (la masse d’articles sur le sujet est assez impressionnante).

Le principe de ces système, la zone 3, non audible pour causes multiples va être ramenée dans la zone 2 (AE) ou en lisière audible de la zone 2 (SR):

Un zone fréquentielle non audible (3) va être "décalée" vers une zone audible

Mais… (sinon il n’y aurait pas d’article !), comment « objectiver » (pas joli ce mot) ces systèmes ? Où démarrer ? Où s’arrêter ? Que transposer/compresser ? Et surtout: comment observer l’effet produit sur la parole amplifiée ?
A titre personnel, j’ai assez vite pu mettre en évidence la transposition fréquentielle (AE) par le Visible Speech, sur une voix « live ». Le plus frappant est de prononcer un /s/, en général bien ciblé vers 5/6KHz et de le voir se décaler vers 3KHz. C’est frappant, mais un peu « appuyé » comme démonstration…
Quant à la compression fréquentielle (SR), je faisais confiance… bref je séchais !
Alors Zorro est arrivé ! Zorro ce n’est pas moi, c’est un constructeur de chaînes de mesure: Audioscan. Non distribué en France, ce constructeur a mis au point un signal (trois signaux pour être exact) de mesure (signaux vocaux) afin de tester les appareils à décalages fréquentiels. Ca fait déjà quelques mois de ça quand même, mais les nouvelles d’Amérique me sont amenées par les mouettes qui font la traversée, désolé…
Donc je reprends: la manip. consiste à créer un signal vocal dont les médiums sont « amputés » et dont seule une bande dans les aiguës est laissée, 4000 ou 5000 ou 6300Hz:

Le « creux » dans les médiums sert en fait à mettre en évidence le rabaissement fréquentiel induit par l’appareil (transposition ou compression); c’est à dire que la zone « enlevée » permettra de ne pas « polluer » la visualisation (mesure in-vivo) du glissement fréquentiel. Le but étant de tester d’abord sans le système de décalage fréquentiel, puis avec.

Le choix de signal 4KHz, 5KHz ou 6.3KHz se fait (à mon avis) surtout pour les systèmes à transposition, en fonction de la fréquence de démarrage. Pour les systèmes à compression fréquentielle, le signal filtré 4 ou 5KHz semble suffire (encore mon avis).

Et ces signaux ? Comme souvent Audacity est l’ami des audios, l’ISTS est passé à la casserolle:

Donc trois fichiers wave distincts selon le filtre passe-bande souhaité, intégrés dans la chaîne de mesure.

Intégrés à la chaîne de mesure, ça donne un test « test REM décalages fréquentiels » que vous pouvez télécharger pour Affinity (2.0.4 sp2). Voyons voir si ça marche… va t-on enfin visualiser tout le travail de ces systèmes ? Est-ce que ça marche ? Quelques surprises…

  • La transposition fréquentielle:

Le principe est connu, rétrograder d’une octave une bande fréquentielle:

Principe de la transposition fréquentielle

Là, je dirais que l’effet est tellement ENOOOORME qu’il a toujours été facile de le mettre en évidence in-vivo. Il suffisait de produire un son situé dans la zone transposée et de le chercher une octave plus basse.

Par exemple sur ce patient:

NS in-vivo sans transposition

La perception est nulle pour la zone 6KHz (le /s/ par exemple). Si on active un programme de transposition de la zone:

Proposition logicielle de transposition

En utilisant l’ISTS filtré sur 6.3KHz, on obtient:

Transposition du 6KHz

On voit bien que la zone 3KHz est plus élevée que sans la transposition (à comparer avec la courbe verte de la mesure REM précédente). Est-ce que ce réglage sera toléré sans problème, c’est encore une autre histoire… mais la visualisation est possible, le système est objectivable (ah ! ce mot !). Par contre, la zone transposée « s’ajoute » en intensité à la zone « saine », d’où la nécessité parfois soit de minimiser l’AE (c’est réglable), soit de diminuer le gain de la zone à transposer dans le programme sans transposition.

L’avantage d’un signal vocal filtré, je le redis, est de mieux visualiser la zone transposée puisqu’elle se retrouve seule dans les médiums/aigus.

  • La compression fréquentielle:

Alors là, il y a du boulot. A titre personnel, je n’avais jamais réussi à visualiser l’effet de ce système en action. Ca restait « noyé » dans les fréquences contiguës en mesure in-vivo jusqu’à maintenant.

Allez zou:

Voici l’audiogramme du gentil « cobaye ».

Et voici le réglage logiciel proposé:

Réglage défaut du Sound Recover
Réglage défaut du SoundRecover

Il est donc proposé de démarrer la compression fréquentielle à 4.8KHz. Si je ne doute pas que certains sons soient perçus dans cette zone, j’ai nettement plus de doutes pour les indices vocaux, et effectivement, mesure in-vivo à la voix (ISTS):

NS in-vivo voix moyenne

Aucune information ne passe au-delà de 4KHz: le choix d’une fréquence « receveuse » à 4.8KHz n’est pas judicieux si on veut faire passer des informations vocales dan cette zone.

Donc première chose: si on se sert de la compression fréquentielle pour améliorer la perception vocale des zones fréquentielles aiguës, il est quasiment indispensable de réaliser une mesure in-vivo de niveau de sortie (REAR avec ISTS par exemple) afin de bien déterminer à quel endroit exact on enclenche le système. Dans le cas ci dessus, la zone 3K/3.5Khz semble appropriée si on ne veut pas plus augmenter le gain à 4KHz (zones mortes par exemple…). Le principe de la compression fréquentielle étant de démarrer en « lisière » de la bande passante audible, autant bien calculer sa zone de réception, la fameuse « cut-off frequency » de l’illustration suivante:

Le principe de la compression fréquentielle

Et après essais à 3.9 puis 3.3KHz pour le patient suivant, on obtient:

REAR ISTS filtré 4KHz sans et avec SoundRecover démarré à 3.3KHz

J’explique la mesure: la courbe fine orange est le signal filtré 4KHz sans activation du SoundRecover, la courbe grasse après activation. On constate une élévation du niveau de sortie (légère, environ 5 dB) vers 3.5KHz provoquée par le rabaissement fréquenciel de la zone 4KHz et plus.

Donc léger « glissement » en fréquence et augmentation de niveau.

  • Discussion:

A l’usage, on peut tous le constater, la transposition est très efficace, « visible » et audible et permet à certains patients de retrouver des sons totalement oubliés et inaccessibles autrement. De là à dire que la transposition est un système plus dédié aux « zones mortes » ou pentes audiométriques importantes, il n’y a qu’un pas… que je ne franchis pas ! Toujours est-il que la transposition demandera un temps d’apprentissage.

La compression, elle, est plus discrète, moins surprenante pour les patients que la transposition. En essayant de tester in-vivo par le moyen de signaux filtrés, on s’aperçoit qu’elle est peut-être moins « visible » que la transposition pour les pentes fortes, donc peut-être moins adaptée. Mais à l’inverse, elle permet d’enrichir les informations vocales dans des zones en général inaccessibles (4K et au-delà), sans choquer. L’usage d’un tel système sur une surdité plate et moyenne est très facile à mettre en évidence avec ces signaux (voir l’article de Phonak suivant).

Donc transpo ? compression fréquentielle ? Vous avez des éléments de réponse. A vos tests !

  • A propos du test:

Vous trouverez en téléchargement un test prédéfini pour Affinity 2.0.4 sp2, il suffit de placer les signaux filtré, téléchargeables ici dans un dossier quelconque et de paramétrer le test pour aller les chercher.

Pour les autres chaînes de mesure récentes (Unity 2 ou FreeFit), je pense qu’il est possible aussi d’intégrer ces signaux wave.

Bibliographie:

Présentation du test mis au point par Audioscan (c’est vers la fin).

Le test Affinity à importer.

Les signaux à télécharger.

Un article de PHONAK sur les tests in-vivo d’efficacité du SoundRecover, très impressionant pour les surdités « plates »… ça marche !

Une « contre-étude » d’un fabricant (!!!) sur les systèmes de rabaissement fréquentiels. Censuré ! (non, je blague, je ne le retrouve plus !).

Un article du Kuk qui met au point un test vocal tentant de mettre en évidence les effets de ces systèmes de décalages fréquentiels: le test ORCA.

Du même auteur, un article sur les tests des systèmes de rabaissement fréquentiel.

Merci à Jean-Baptiste BARON pour les manips.

Bienvenu

Bienvenu chez Blog-Audioprothesiste.fr !

Qui Sommes nous ?

Contactez nous !

Je contacte Sébastien
Je contacte Xavier
Je contacte Jean Michel