Catégorie : Chaînes de mesure

Ca porte en général un doux nom du type « Sound Recover » (SR) ou « Audibility Extender » (AE). Le terme générique souvent utilisé est « frequency shifting » ou « frequency lowering » (décalage ou rabaissement fréquentiel).
On peut considérer que ces techniques ont franchement changé la vie des utilisateurs de ces systèmes, même si on peut discuter de l’apport d’intelligibilité (la masse d’articles sur le sujet est assez impressionnante).

Le principe de ces système, la zone 3, non audible pour causes multiples va être ramenée dans la zone 2 (AE) ou en lisière audible de la zone 2 (SR):

Un zone fréquentielle non audible (3) va être "décalée" vers une zone audible

Mais… (sinon il n’y aurait pas d’article !), comment « objectiver » (pas joli ce mot) ces systèmes ? Où démarrer ? Où s’arrêter ? Que transposer/compresser ? Et surtout: comment observer l’effet produit sur la parole amplifiée ?
A titre personnel, j’ai assez vite pu mettre en évidence la transposition fréquentielle (AE) par le Visible Speech, sur une voix « live ». Le plus frappant est de prononcer un /s/, en général bien ciblé vers 5/6KHz et de le voir se décaler vers 3KHz. C’est frappant, mais un peu « appuyé » comme démonstration…
Quant à la compression fréquentielle (SR), je faisais confiance… bref je séchais !
Alors Zorro est arrivé ! Zorro ce n’est pas moi, c’est un constructeur de chaînes de mesure: Audioscan. Non distribué en France, ce constructeur a mis au point un signal (trois signaux pour être exact) de mesure (signaux vocaux) afin de tester les appareils à décalages fréquentiels. Ca fait déjà quelques mois de ça quand même, mais les nouvelles d’Amérique me sont amenées par les mouettes qui font la traversée, désolé…
Donc je reprends: la manip. consiste à créer un signal vocal dont les médiums sont « amputés » et dont seule une bande dans les aiguës est laissée, 4000 ou 5000 ou 6300Hz:

Le « creux » dans les médiums sert en fait à mettre en évidence le rabaissement fréquentiel induit par l’appareil (transposition ou compression); c’est à dire que la zone « enlevée » permettra de ne pas « polluer » la visualisation (mesure in-vivo) du glissement fréquentiel. Le but étant de tester d’abord sans le système de décalage fréquentiel, puis avec.

Le choix de signal 4KHz, 5KHz ou 6.3KHz se fait (à mon avis) surtout pour les systèmes à transposition, en fonction de la fréquence de démarrage. Pour les systèmes à compression fréquentielle, le signal filtré 4 ou 5KHz semble suffire (encore mon avis).

Et ces signaux ? Comme souvent Audacity est l’ami des audios, l’ISTS est passé à la casserolle:

Donc trois fichiers wave distincts selon le filtre passe-bande souhaité, intégrés dans la chaîne de mesure.

Intégrés à la chaîne de mesure, ça donne un test « test REM décalages fréquentiels » que vous pouvez télécharger pour Affinity (2.0.4 sp2). Voyons voir si ça marche… va t-on enfin visualiser tout le travail de ces systèmes ? Est-ce que ça marche ? Quelques surprises…

  • La transposition fréquentielle:

Le principe est connu, rétrograder d’une octave une bande fréquentielle:

Principe de la transposition fréquentielle

Là, je dirais que l’effet est tellement ENOOOORME qu’il a toujours été facile de le mettre en évidence in-vivo. Il suffisait de produire un son situé dans la zone transposée et de le chercher une octave plus basse.

Par exemple sur ce patient:

NS in-vivo sans transposition

La perception est nulle pour la zone 6KHz (le /s/ par exemple). Si on active un programme de transposition de la zone:

Proposition logicielle de transposition

En utilisant l’ISTS filtré sur 6.3KHz, on obtient:

Transposition du 6KHz

On voit bien que la zone 3KHz est plus élevée que sans la transposition (à comparer avec la courbe verte de la mesure REM précédente). Est-ce que ce réglage sera toléré sans problème, c’est encore une autre histoire… mais la visualisation est possible, le système est objectivable (ah ! ce mot !). Par contre, la zone transposée « s’ajoute » en intensité à la zone « saine », d’où la nécessité parfois soit de minimiser l’AE (c’est réglable), soit de diminuer le gain de la zone à transposer dans le programme sans transposition.

L’avantage d’un signal vocal filtré, je le redis, est de mieux visualiser la zone transposée puisqu’elle se retrouve seule dans les médiums/aigus.

  • La compression fréquentielle:

Alors là, il y a du boulot. A titre personnel, je n’avais jamais réussi à visualiser l’effet de ce système en action. Ca restait « noyé » dans les fréquences contiguës en mesure in-vivo jusqu’à maintenant.

Allez zou:

Voici l’audiogramme du gentil « cobaye ».

Et voici le réglage logiciel proposé:

Réglage défaut du Sound Recover
Réglage défaut du SoundRecover

Il est donc proposé de démarrer la compression fréquentielle à 4.8KHz. Si je ne doute pas que certains sons soient perçus dans cette zone, j’ai nettement plus de doutes pour les indices vocaux, et effectivement, mesure in-vivo à la voix (ISTS):

NS in-vivo voix moyenne

Aucune information ne passe au-delà de 4KHz: le choix d’une fréquence « receveuse » à 4.8KHz n’est pas judicieux si on veut faire passer des informations vocales dan cette zone.

Donc première chose: si on se sert de la compression fréquentielle pour améliorer la perception vocale des zones fréquentielles aiguës, il est quasiment indispensable de réaliser une mesure in-vivo de niveau de sortie (REAR avec ISTS par exemple) afin de bien déterminer à quel endroit exact on enclenche le système. Dans le cas ci dessus, la zone 3K/3.5Khz semble appropriée si on ne veut pas plus augmenter le gain à 4KHz (zones mortes par exemple…). Le principe de la compression fréquentielle étant de démarrer en « lisière » de la bande passante audible, autant bien calculer sa zone de réception, la fameuse « cut-off frequency » de l’illustration suivante:

Le principe de la compression fréquentielle

Et après essais à 3.9 puis 3.3KHz pour le patient suivant, on obtient:

REAR ISTS filtré 4KHz sans et avec SoundRecover démarré à 3.3KHz

J’explique la mesure: la courbe fine orange est le signal filtré 4KHz sans activation du SoundRecover, la courbe grasse après activation. On constate une élévation du niveau de sortie (légère, environ 5 dB) vers 3.5KHz provoquée par le rabaissement fréquenciel de la zone 4KHz et plus.

Donc léger « glissement » en fréquence et augmentation de niveau.

  • Discussion:

A l’usage, on peut tous le constater, la transposition est très efficace, « visible » et audible et permet à certains patients de retrouver des sons totalement oubliés et inaccessibles autrement. De là à dire que la transposition est un système plus dédié aux « zones mortes » ou pentes audiométriques importantes, il n’y a qu’un pas… que je ne franchis pas ! Toujours est-il que la transposition demandera un temps d’apprentissage.

La compression, elle, est plus discrète, moins surprenante pour les patients que la transposition. En essayant de tester in-vivo par le moyen de signaux filtrés, on s’aperçoit qu’elle est peut-être moins « visible » que la transposition pour les pentes fortes, donc peut-être moins adaptée. Mais à l’inverse, elle permet d’enrichir les informations vocales dans des zones en général inaccessibles (4K et au-delà), sans choquer. L’usage d’un tel système sur une surdité plate et moyenne est très facile à mettre en évidence avec ces signaux (voir l’article de Phonak suivant).

Donc transpo ? compression fréquentielle ? Vous avez des éléments de réponse. A vos tests !

  • A propos du test:

Vous trouverez en téléchargement un test prédéfini pour Affinity 2.0.4 sp2, il suffit de placer les signaux filtré, téléchargeables ici dans un dossier quelconque et de paramétrer le test pour aller les chercher.

Pour les autres chaînes de mesure récentes (Unity 2 ou FreeFit), je pense qu’il est possible aussi d’intégrer ces signaux wave.

Bibliographie:

Présentation du test mis au point par Audioscan (c’est vers la fin).

Le test Affinity à importer.

Les signaux à télécharger.

Un article de PHONAK sur les tests in-vivo d’efficacité du SoundRecover, très impressionant pour les surdités « plates »… ça marche !

Une « contre-étude » d’un fabricant (!!!) sur les systèmes de rabaissement fréquentiels. Censuré ! (non, je blague, je ne le retrouve plus !).

Un article du Kuk qui met au point un test vocal tentant de mettre en évidence les effets de ces systèmes de décalages fréquentiels: le test ORCA.

Du même auteur, un article sur les tests des systèmes de rabaissement fréquentiel.

Merci à Jean-Baptiste BARON pour les manips.

Help !

Je ne taris pas d’éloge pour le logiciel d’OTICON dénommé très intelligemment GENIE ! (hum, hum…). Hélas, j’ai relevé un petit bug (de rien du tout, à moins que je n’ai pas tout bien compris depuis le début ;-))… En effet, le fait de mesure le REUG du client produit une courbe RECD… Exemple :

Vous remarquerez que la première étape se déroule correctement puisque que les données mesurées sont importés directement via le module de mesure REM. Etrangement, la mesure RECD apparaît alors qu’aucune mesure aux inserts n’a été effectuée…

De plus, l’encoche qui apparaît est signe d’un problème d’insertion des inserts (manque de profondeur dans l’insertion de la sonde)… glups.

Help, quelqu’un a-t-il compris pourquoi (est il si méchant ;-)) ? Alors vrai bug ou mauvaise compréhension de la mesure ?

Ah oui, j’utilise AURICAL+, merci d’avance

Merci à mon ami Clément SANCHEZ, de la société otometric otometrics (il ne faut pas oublier le « s »), qui nous envoie une vidéo, venue tout droit des « states », sur les PMM*. Otometrics propose via AURICAL FREEFIT™ différentes mesures du CAE avec ou sans appareils auditifs, de façon à valider les réglages des appareils auditifs et de visualiser via une carte de la dynamique auditive résiduelle le positionnement acoustique des différents sons de la vie quotidienne, y compris la voix !

Au passage, OTOMETRICS propose un channel sur youtube : http://www.youtube.com/user/OtometricsTV

Bonne année audiologique !

* PMM : Potentiels Microphoniques

Un petit message de soutien de la part de tous nos lecteurs pour que tu continues à nous abreuver de ton savoir de tes tatonnements sur la RECD, l’in-vivo et tutti quanti ! Et quelques questions aussi ! j’avoue humblement quelque fois avoir des questions et le temps n’aidant pas, je ne commente pas ! Alors voici un question réponse (en décalé) :

SG : Alors pour commencer (comme ça paf !) et si je te suis bien, tu proposes d’utiliser systématiquement la RECD au détriment de la mesure in vivo classique ? quels sont les avantages ?

XD : Non, nous faisons RECD ET in-vivo !!! (ceinture plus bretelles ?). Je t’explique: nous mesurons nos seuils aux inserts EAR 5A. Les inserts ont pas mal d’avantages (isolations aux bruits extérieurs, transferts trans-crâniens plus limités, etc…) mais surtout, comme ils sont étalonnés sur coupleur 2cc; et tu sais que le RECD est la différence entre le niveau dans le coupleur et celui dans l’oreille, alors la mesure du RECD nous permet, en gardant la même mousse, de savoir en dB SPL au tympan quel est le niveau qui a fait répondre « oui » à un patient. Le RECD est donc utilisé ici pour construire le SPLoGramme et avoir des cibles en dB SPL au tympan mesurées et non statistiques. Mais on pourrait utiliser les RECD statistiques des formules de mesure, ça collerait déjà pas mal.

Le RECD pourrait aussi servir à « simuler l’oreille au coupleur » en renseignant le coupleur sur les niveaux mesurés in-vivo, mais ce n’est pas le but premier recherché, même si cette démarche est utile avec des enfants chez qui la MIV est impossible.

Les logiciels font ensuite (devraient faire…): SPL tympan = HL + RETSPL EAR 5A + RECD , c’est automatique si tu fournis HL et RECD. Mais si tu ne fournis que les données audiométriques HL (sans avoir mesuré de RECD), les logiciels appliqueront un RECD statistique en fonction de l’âge, et même dans certains cas en fonction de leurs propres mesures en labo (avec effet d’insertion, évent, etc…).

Mais quand on travaille aux inserts, il faut SURTOUT dire à tous les logiciels et au REM que les seuils sont issus d’inserts, car les dérivations sont très différentes selon qu’il s’agit du casque ou d’inserts.

Pourquoi les inserts ? (question que tu n’as pas posée 😉 )

Car les « dérivations HL–>SPL tympan », c’est à dire les stats de conversion HL–>SPL de NAL ou DSL, pour les casques, bof…

Je m’explique: en fouillant un peu, on s’aperçoit que plus le « coupleur d’étalonnage » est grand (env. 6cc pour le casque), plus le niveau estimé au tympan en dB SPL sera TRES aléatoire, car la variabilité inter-individuelle est énorme (et je parle d’adultes là… tu imagines les enfants !). Et pour le casque il n’existe que difficilement des tests permettant de savoir si xdB HL sont émis par l’audiomètre, quel est le niveau en dB SPL résultant au tympan: seule une mesure, la REDD, permettrait ceci. Le matériel est rare, la procédure de mesure, un peu délicate…

Pour l’insert (calibré sur 2cc), c’est donc un volume résiduel plus petit, donc un risque de variabilité plus faible. Et en tout cas, si vraiment on voulait être précis, il est plus courant (et aisé ?) de mesurer un RECD qu’un REDD…

Tout ça pour dire que faire de la mesure in-vivo c’est bien, mais ce n’est pas suffisant en soi si on ne connait pas précisément en dB SPL en fond de conduit ce que perçoit le patient. Et je pense que l’audiométrie aux inserts, qui ne change finalement pas grand chose à nos habitudes, permet plus de précision dans ce sens.

J’enfonce le clou: par exemple, DSL dit « préférer » (et NAL aussi d’ailleurs…) les inserts. Mais on les comprend bien, car dans dans le cas d’une audiométrie faite au casque:

  • NAL va passer en dB SPL par la formule SPL tympan = HL + REDD. Ce REDD est statistique (pages 18 et 57), propre au NAL, mesuré sur x patients (en espérant que le votre soit dans la moyenne !!).
  • DSL va passer en dB SPL  par SPL tympan = HL +RETSPL (de HL à SPL pour oreille artificielle) + Coupleur 6cc au tympan. La dernière valeur (coupleur 6cc au tympan) est le résultat d’une étude de Cox en 1986 portant sur 5 femmes et 5 hommes… pas beaucoup !

Le casque est « historiquement » ancré dans les habitudes, mais l’insert serait plus approprié pour l’audio, qui lui, est plus intéressé par le niveau en fond de conduit.

Je reviens juste sur le RECD: utile ou pas ? Fiable ? « Répétable ? Symétrique ? Munro vous dira tout !

Donc le RECD ne sert QUE si tu mesures tes seuils aux inserts, faut-il le rappeler.

On peut aussi mesurer le RECD avec l’embout (HA1 ou HA2 embout) pour simuler au coupleur le comportement in-vivo (pour les enfants). Je ne le fais pas pour les adultes. Thierry RENGLET a fait une présentation au congrès 2010 sur toutes les façons d’utiliser audiométrie aux inserts et le RECD (pages 78 à 83).

Note: sur Aurical, tu peux directement mesurer en dB SPL au tympan par le ME-intra ou inserts EAR… très classe ! Il faut le redire aux possesseurs d’Aurical qui font de la MIV: c’est un des rares matériels disponible en France à pouvoir mesurer directement en SPL fond de conduit (/page pub off/).

SG : J’avoue humblement que j’ai des difficultés quelquefois à évaluer les différences techniques dues à l’usage de l’ISTS (que j’utilise systématiquement, c’est logique ;-)) et des sweep tonaux. Quel est l’avantage à utiliser un glissement fréquentiel ?

XD : l’ISTS permet de ne pas désactiver les RB et autres systèmes sur les AA. A l’atelier du congrès, j’avais montré le comportement en sweep et à l’ISTS d’un appareil: +15dB de gain à l’ISTS avec certains appareils récents et orientés détection de la parole. Ca permet aussi de faire quelque chose de didactique aux gens: « voici les consonnes sifflantes…que vous n’entendez pas ! et les voyelles, etc… ». Et enfin, avec de tels signaux, l’audio peut « voir » à quel point la parole est quelque chose de ténu, fluctuant, etc… et à quel point la moindre baisse d’audition prive une personne très rapidement d’informations vers le 6KHz, ou de bas niveau.

Quand j’entends parler de bandes passantes jusqu’à 6, 8 ou 10KHz, je rigole doucement ! Avec l’utilisation de signaux vocaux tel l’ISTS en MIV, si le 4KHz passe, c’est déjà bien… Et ce n’est pas un argument « bidon » que de dire aux gens « Appareillez-vous le plus tôt possible » car quand tu utilises la voix comme signal de test, tu t’aperçois vite que le meilleur appareil, c’est l’oreille pas encore trop dégradée !

SG à XD : MERCI !

XD à SG : PAREIL !

Noah ne sert pas qu’à stocker le nom, prénom et date de naissance de nos patients, également l’audiométrie et les séances de réglages. Une fonction méconnue de ce logiciel est la mise en mémoire des « empreintes acoustiques ».

Qu’est ce donc ?

Pour ceux qui pratiquent la mesure in-vivo, il s’agit de la résonance oreille nue (REUG ou GNO) et du RECD (si vous travaillez aux inserts, afin d’établir un SPLoGramme ou simuler au coupleur un comportement in-vivo).

De plus en plus de logiciels possèdent maintenant la fonction « importer de Noah » pour le REUG et le RECD.

Mais dans Noah, vous ne trouverez pas ces « empreintes acoustiques ». Elles sont stockées, les logiciels y ont accès, mais elles sont cachées…

Mettons que vous avez une chaîne de mesure récente, vous mesurez donc avec un signal vocal la courbe de réponse oreille nue (REUR) et vous obtenez ça :

Pas très explicite (c’est normal, c’est le spectre vocal analysé en FFT)… mais votre chaîne de mesure qui fait vraiment bien les choses, vous transforme ces niveaux de sortie en gain (REUG) par soustraction du niveau émis du niveau au tympan, et vous obtenez ça :

Au moins ça ressemble à une résonance de conduit auditif « dans la norme ».

Vous décidez de fournir, via Noah, au logiciel de réglage ce joli REUG et vous obtenez ça :

Dommage ! Noah fournit aux logiciels non pas le gain oreille nue (REUG) mais stocke la réponse oreille nue (REUR), d’où la vilaine courbe…

Par contre pour les RECD, c’est sans problèmes.

Une solution pour contourner ce problème serait (et ça semble dans une certaine logique) de prendre des « empreintes acoustiques » des conduits lors du premier RDV, un peu comme on prend des empreintes physiques. Et là, de faire la mesure oreille nue en balayage. Sinon on obtient la courbe ci-dessus…

Ce qui donne comme REUG ceci, d’aspect plus parlant :

Et pour les aventureux de l’insert, le RECD :

Et voici comment Phonak récupère ceci :

… et Bernafon :

… et Siemens (qui récupère aussi les données REUG):

… GN-Resound :

Bref, presque tout le monde (Unitron, OTICON, la galaxie Connexx, d’autres que j’oublie ?) va faire son marché de vos données acoustiques dans Noah, à condition que le REUR ait été mesuré EN BALAYAGE au préalable. Le RECD n’est utile que si les données audiométriques sont obtenues aux inserts.

On notera quand même Starkey et Widex qui ne récupèrent pas automatiquement ces valeurs, mais que l’on peut chez eux saisir manuellement. Mais en fait, ces deux fabricants mesurant en direct dans le conduit les valeurs SPL ou RECD, tout semble logique de leur part.

Donc on le voit, Himsa fait de gros efforts d’interface logicielle/matériel de mesure. Les fabricants font des logiciels (GRATUITS, faut-il le dire !) de plus en plus pointus et qui recueillent le maximum de données pour approcher la satisfaction patient. Et… vous avez peut-être remarqué que dans les tags de ce post il y avait « certification AFNOR ». Ah ?

Une « empreinte acoustique » qui est un acte purement audioprothétique ne rentrerait-elle pas dans cette belle démarche ?

Certes, faire ces mesures ne signifie pas correctement travailler et bien réussir son appareillage, mais ne pas les faire est-il assimilable à une « perte de chance » pour un appareillage en échec ?

En fait, pour tout dire, j’ai peur ! Peur que cette certification AFNOR tant attendue pour valider une pratique très qualitative, ne se transforme en « moins disant européen »; peur de voir des avancées en paperasse (documents d’informations, guide des bonnes pratiques, etc…, le gna-gna habituel !) mais pas dans la pratique concrète; peur de voir un truc du genre « il faut un audiomètre bi-canal  et se laver les mains entre chaque patient» (oh ?!) ; peur de la médiocrité alors que je pense que beaucoup attendent une sortie vers le haut !

J’espère me tromper.

Si vous avez un Affinity, je mets ici un fichier de test « empreintes acoustiques » à télécharger.

PS : merci à Gilles A. pour son insatiable curiosité qui me motive à fouiner, des fois que je m’ennuie !

On commençait à bien le connaître ce bon vieux NAL NL1 (peu de gain à 250 Hz ; gain max entre 1 et 2 KHz ; peu de gain au delà de 4 KHz ; un ratio de compression entre 1.8 et 2.5 de moyenne) ! Depuis 1991/1992, il a supplanté toutes les autres méthodologies généralistes pour l’appareillage auditif de l’adulte.

Après quelques manipulations, je commence tout doucement à découvrir NAL NL2 qui brise certains dogmes établis par NAL NL1, en particulier le gain au delà de 3/4 KHz et le niveau de la compression du signal (en gros, NL1 n’a jamais été en faveur d’un gain substantielle quand la perte dépasse 65 dB au delà de 4 KHz).

Il est très important de manipuler NAL NL1 & NAL NL2 pour bien comprendre les différences. NAL NL2 étant multi-factorielles, il est important de bien renseigner le logiciel d’une part et de bien connaître la pondération apportée par chaque critère à la modification de la cible (prise en compte du niveau de perte auditive ; du SSI ; de l’âge ; du genre ; de l’expérience ; modèle de préfèrence de compression en fonction du niveau de la perte auditive ; de la présence de zones mortes ; des mesures OEAP et  PEA). Ainsi, les 2 méthodologies peuvent afficher un écart important en fonction des différents critères. Des généralités sont difficiles à définir, et l’élaboration de la cible varie selon chaque cas. Néanmoins, on peut évoquer que :

  • la sensation sonore perçue par le malentendant est moins importante avec NAL NL2, y compris en cas de renouvellement.
  • L’accélération du gain dans les hautes fréquences en cas de perte auditive importante et d’expérience de l’appareillage auditif (sauf en cas de zones mortes cochléaires).

Celles-ci sont faibles dans le cas de surdité légère à moyenne : un niveau de sortie équivalent à 50 dB d’entrée et une compression plus importante dans les hautes fréquences. Par contre, en cas de surdité importante et de renouvellement (>70 dB au delà de 2 KHz), les différences s’inversent : Le gain dans les hautes fréquences devient supérieurs, tout en étant jumelé à un ratio de compression important.

fig 1 : niveaux de sortie obtenus en suivant les courbes proposées par NAL/NL1 et NAL/NL2 sous connexx

Le critère « expérience antérieure d’une aide auditive » est évidemment l’élément qui modifie fortement le gain de l’appareil, ainsi que l’âge du patient.

Dans le cas précis, le seul petit regret est que je n’ai pas pu renseigner sous connexx si il y avait ou pas une zone inerte cochléaire. Le gain prescrit aurait alors grandement changé (Cf la figure 2).

Pré-requis:

  1. vous êtes l’heureux (ou pas !) possesseur d’un Affinity
  2. paramétrer l’engin vous fait peur mais vous aimeriez l’exploiter au mieux
  3. vous avez du temps à y consacrer (mais du temps à gagner au final…)
  4. vous adorez qu’on vous parle anglais (ne partez pas !!! 😉 )
  5. et enfin, vous n’avez pas… RTFM !

Affinity est un merveilleux joujou mais encore faut-il bien paramétrer ses tests d’usage quotidien, car ceux proposés par défaut sont trop anglo-saxons (à mon goût) et par forcément adaptés à votre pratique quotidienne.

Mais seulement, autant vous pourrez demander à cette machine de faire tout ce que vous voulez, et comme vous voulez, autant créer ses propres tests et les impressions qui vont avec peut s’avérer délicat. Et je ne parle pas de la maîtrise de l’engin et de l’interprétation des données… on ne dompte pas une bête de course du jour au lendemain !

Interacoustics a dû avoir des échos sur ces points car il propose sur son site des vidéos d’entrainement sur des aspects très variés de la machine:

Tout celà est tiré de la section « Resources » d’Interacoustics, allez y faire un tour de temps en temps, de nombreux articles intéressants sur de nombreux sujets audiologiques s’y trouvent.

Bienvenu

Bienvenu chez Blog-Audioprothesiste.fr !

Qui Sommes nous ?

Contactez nous !

Je contacte Sébastien
Je contacte Xavier
Je contacte Jean Michel