Catégorie : Audiométrie tonale

Dans le résumé, réalisé par Xavier DELERCE, de la thèse du Docteur Séverine LEUSIE, on peut lire sous le premier tableau : « En effet, selon cet organisme, il n’existe « pas de surdité » en dessous de 20 dB HL de perte auditive moyenne. »

J’ai retrouvé un texte du Professeur J.C. LAFON écrit en 1995 et intitulé « AUDITION ET LANGAGE en 1968 » où il est écrit en page 10 -11 :

« LA NOTION DE SEUIL ET CHAMP AUDITIF

On ne connaît scientifiquement que ce que l’on a mesuré ou dénombré. Et notre connaissance s’arrête aux éléments étudiés et préalablement définis.

La connaissance du fonctionnement de la cochlée (organe récepteur des signaux acoustiques situés dans l’oreille interne) est avant tout celle des ses limites et uniquement pour la réception des sons purs (ou de bandes de fréquences) continus dans le temps. On considère en physiologie et en physique une limite extrême des possibilités de l’oreille représentée pour une courbe (dite de Wegel). Elle se mesure dans des conditions acoustiques exceptionnellement bonnes avec des sujets choisis pour la qualité de leur audition. Le niveau de référence physique est :

2 x 10 puissance -5 pascal à 1000 Hertz

référence utilisée aussi pour toutes les fréquences. On remarque ainsi que les sons graves et les sons aigus doivent avoir une certaine intensité au-dessus de ce niveau pour être perçus.

Dans la mesure clinique, le principe de détermination du zéro change : on compare l’audition d’un sujet à l’audition de sujets « standard ».

Autrement dit, le niveau de référence physiologique devient la courbe de Wegel précédemment établie et l’on note note sur le graphique la perte en déciBEL, par rapport à l’oreille normale. Le déciBEL, unité de mesure des sons, correspond au logarithme du rapport des pressions du niveau mesuré au niveau de référence, physique pour la courbe de Wegel, physiologique pour l’examen audiométrique.

En fait, malheureusement, la définition du niveau de référence audiométrique n’a pas été donné par des physiciens, mais par des psychologues-audiologistes. La notion de seuil est normalisée à partir des réponses de 50% des sujets étudiés. Le seuil n’est plus la limite physiologique mais l’exploitation statistique d’une population. Il devient ainsi différent aux U.S.A., en Angleterre, en France, en Allemagne, suivant les valeurs adoptées par les comités de normalisation. Pour remédier à cet état de fait, une commission internationale (I.S.O.) a défini un standard ces dernières années, se rapprochant des normes physiologiques.

Par ailleurs, on sait que la marge d’erreur entre l’audition de « quelque chose » et la certitude d’entendre un son peut dépasser 10 dB suivant l’état d’attention du sujet. Le seuil n’est pas une limite précise, mais une zone d’incertitude et de probabilité. Nous verrons de plus que, d’un sujet à l’autre, on rencontre dans ce niveau de seuil des variations dépendant des qualités de structuration des perceptions, variations physiologiques, sans aucune signification « auditive », qui peuvent dépasser 10 dB.

Autrement dit, dans de bonnes conditions de mesure, dans des cabines sourdes bien construites avec un audiomètre correctement calibré, on peut rencontrer des variations qui, à la limite, peuvent atteindre 20 dB, sans qu’il s’agisse de modifications anormales et sans que l’on puisse attribuer à un groupe de sujets déterminé une modification significative. Avec les courbes de référence I.S.O., ces variations sont incluses entre 0 et 20 dB. Toute courbe comprise dans ces limites peut être considérée comme subnormale. Si la plupart des courbes se situent entre 5 et 15 dB, la répartition statistique d’une population prise au hasard, sans atteinte de l’oreille, sans perturbation de la perception, fait apparaître une probabilité un peu plus large. Lorsqu’on sait par ailleurs que l’échelle de mesure va de 5 en 5 dB, donc, par définition, qu’un chiffre avancé est estimé à + ou – 5 dB; on est surpris de voir attribuer une signification à des variations qui n’expriment que la marge d’erreur de la mesure effectuée »

JYM

Au cours du Congrès des Audioprothésistes qui s’est déroulé en avril 2015, j’ai eu l’occasion de rencontrer un confrère intéressé par les listes du test phonétique en langue espagnole car lui-même parle l’espagnol et certains de ses patients le parle en tant que langue maternelle.

Cela m’a donné l’idée de communiquer les listes du test phonétique dans toutes les langues étrangères trouvées dans les écrits du Professeur LAFON.

Je commence donc aujourd’hui avec l’anglais, « …langue officielle ou langue spéciale dans au moins 75 pays du monde, pour une population mondiale de plus de 2 milliards de personnes ». (1)

On trouve ces listes en page 234 à 237 du livre du Professeur LAFON « The phonetic test and the measurement of hearing » :
img683
Sweep word lists pour liste de balayage.
Cochlear lists pour liste cochléaire.
img684
Integration lists pour liste d’intégration.
On s’aperçoit donc qu’il n’existe pas de liste de recrutement en anglais.
JYM

Un peu pour information, un peu pour une question, voici le résultat de mesures audiométriques (tonale/vocale) et acoustiques sur un patient présentant une cavité d’évidement et des cryptes à droite.

Séquelles de coups dans l’enfance… OD et OG opérées à de multiples reprises (7 fois en tout).

L’audiométrie tonale (merci les inserts: pas de masking nécessaire même sur ces seuils, en tonale):

CA

La nature étant bien faite, ce patient réussit quand même (OG masquée) à obtenir ce score en listes cochléaires de LAFON:

Voc

Les mesures acoustiques des CAE mettent en évidence des valeurs totalement atypiques à droite, liées à l’évidement (longueur et volume hors norme).

La mesure oreille nue (REUG):

REUG

On a à droite un pic à 1600Hz, ce qui donne une approximation de longueur de conduit de (340000/1600)/4 = 53,1mm !!!

5 cm de conduit, ou plutôt de cavité(s)…

La mesure RECD:

RECD

Le coupleur fait 2cc. Un RECD HA1 « standard » (courbe bleue en pointillés) est à environ 12dB à 4KHz, ce qui fait une différence de volume de facteur 4 entre le coupleur et le conduit auditif bouché par la mousse (volume conduit 4 fois plus petit que le volume coupleur, soit 0,5/0,6cc, valeurs admises chez l’adulte).

Ici à droite, le RECD est d’environ -6dB, voire moins encore, ce qui signifie que le volume résiduel (résiduel, façon de parler !) du « conduit » ou de ce qu’il en reste est 2 fois plus important que le volume coupleur, donc entre 4 et 5cc, dû aux 3 cryptes que j’ai pu y voir.

Il est évident que si un appareillage était nécessaire à droite (ce que je ne ferai pas), toute approximation statistique logicielle serait totalement à la rue.

Je conclurai par une question simple : en sachant qu’il n’est pas recommandé de fermer l’oreille gauche, toujours plus ou moins humide et que ce patient a perdu depuis bien longtemps la localisation spatiale, appareilleriez-vous cette oreille gauche, de 2K à 3KHz, et qui présente 90% d’intelligibilité à 40dB HL ?

That is the question…

Malgré le raffinement et la très grande diversité des tests à la disposition des audioprothésistes aujourd’hui, nous ne faisons qu’une « photographie », très imparfaite de l’état du système auditif.

L’audiométrie, tonale ou vocale ne s’avère ne tester que les capacités auditives résiduelles, sans nous donner d’informations « au-delà de la quantité ». Des fois, nous aimerions savoir « où » et « quoi » est touché. Ceci ne nous avancerait peut être pas dans nos réglages, mais aurait au moins le mérite de donner une probabilité de chance ou d’échec d’une amplification.

Pour illustrer ce propos, je voulais vous soumettre le cas d’un patient avec deux tentatives d’appareillage sur les dix dernières années. La première en 2003, soldée par un échec, la seconde en cours, et soldée… je me demande bien encore par quoi !

Ce monsieur consulte en 2003 pour une sensation de déséquilibre OD/OG et volonté d’appareiller son oreille la plus basse, son oreille droite:

2003

Je vous passe les détails, mais après deux mois d’essais en tous genres, stratégies diverses, etc., ce patient n’a aucun apport avec une amplification à droite. Pire: cette oreille droite appareillée se révèle perturber l’intelligibilité relativement préservée à gauche. Force est de constater que la fusion binaurale n’intervient pas. Mais comment l’interpréter ? Ca coince quelque part, mais l’audiométrie ne renseigne en rien sur l’origine…

Arrêt de l’adaptation sur un échec à droite en 2003.

Ce patient revient en 2013 (pas rancunier !), pour « un appareillage à gauche, la droite est morte ». Effectivement:

2013

Plus de seuil en tonale en 2013, intelligibilité nulle de ce côté. Ca me laisse penser qu’en 2003, j’avais tenté de m’attaquer à une oreille interne en train de dégénérer, et dont l’audition à fini par totalement disparaître. D’où cet échec je présume.

L’audition à gauche s’est relativement bien maintenue, ainsi que la vocale, très légèrement en baisse, mais pas si mauvaise quand même (LAFON cochléaires).

Nous repartons pour une adaptation à gauche. Je me dis que la technologie actuelle, 15 canaux, directivité, etc. etc., tout cela devrait donner quelque chose de bien:

MIV 2013

C’est beau, c’est carré, pas comprimé, dans la dynamique, écrêté où il faut, programme 2 anti-bruité, anti-larsenné, réducto-bruité, confortable, porté, supporté, etc.

Une « petite » tonale:

CL 2013

Persiste quand même toujours une sensation « métallique » et « claquante », en régression après un mois de port. Tout essai d’amplification plus importante de 2 à 4KHz se solde par un inconfort au quotidien.

Ce patient n’a quand même pas l’air très emballé par l’apport qualitatif. Les discussions sont « à peine plus faciles », la TV « un tout petit peu mieux ».

La vocale:

CL voc 2013

Sans appareil: bleu. Avec appareil: rouge. Pas de quoi pavoiser. Il faut se rendre à l’évidence: l’amplification ne débouche nulle part en quelque sorte. La zone stimulée (1.5-6KHz) ne semble pas « coder » pour l’intelligibilité chez ce patient. Ce qui pourrait être le cas en présence d’une zone morte cochléaire.

Arme ultime, le TEN-Test:

TEN

Le TEN est émis à 80dB/ERB et de 1KHz (!) à 3KHz, si ce n’est pas franchement positif, ce n’est pas non plus négatif. On peut supposer qu’il y a encore des CCI, peut-être, mais fonctionnent-elles correctement ? Et que s’est-il passé à droite en 10 ans ? Y a t-il un rapport avec la disparition de l’OD et le fonctionnement erratique de l’OG ? Qu’a testé l’audiométrie ?

OU EST LE PROBLEME ?

Des questions, des questions, des questions. Pas de réponses. Tout s’améliore aujourd’hui, nos techniques, nos mesures, nos appareils, mais nous ne testons que la périphérie, avec peu de tests capables de nous donner une indication précise du point de dysfonctionnement.

Rendez-vous en 2023 ?

Toi aussi, viens sur le Blog audioprothésiste et améliore ton latin(*) !

Un brevet vient d’être déposé (fin 2011) par notre fabricant helvète préféré (…): le shmilblick consiste à mesurer (ou plus exactement « estimer ») le RECD par l’appareil auditif, sans mesure directe par sonde en fond de conduit, mais par seuil d’apparition du larsen.

La technique n’est pas nouvelle chez ce fabricant, et elle ne semblait pas donner de résultats précis, en l’ayant testée sur des sujets très « déviants ». Mais ça, c’était avant semble t-il, et les audiologistes de la marque y croient vraiment: à tel point qu’ils ont mené des recherches en labo afin de tenter de mettre en évidence une corrélation entre seuil d’apparition du larsen et RECD:

 

Bon, le 1500Hz et sup. à 5000Hz semblent récalcitrants (????) mais pour le reste ça semble assez bien corrélé (même le RECD de la zone 160 à 480Hz est corrélé fortement à l’apparition du larsen dans les aigus !).

Certes, ça reste une estimation statistique sur un nombre x de sujets, jamais étudiée auparavant (à ma connaissance, je n’ai rien trouvé sur le sujet), mais qui semble justifier un dépôt de brevet.

Que penser de tout ceci:

  • Génial, il y a encore des choses à découvrir en audiologie prothétique ! Il fallait y penser.
  • Partant du principe que les audios travaillent en grande majorité au casque, et donc ne mesurent pas de RECD, voire ne font pas de MIV, les fabricants veulent éviter au maximum de « prendre des risques » en mettant sur le marché des aides auditives toujours plus performantes, mais dont les performances seraient totalement annihilées par une adaptation médiocre (mauvaise estimation des seuils au tympan, donc des niveaux appareillés atteints au tympan). On les comprend.
  • Partons du principe que les audio(logiste)s du monde entier font leur maximum pour satisfaire leurs patients: les aides auditives fonctionnant de mieux en mieux et s’adaptant nettement plus précisément qu’il y a 20 ans, pourquoi ne pas envisager dans les prochaines années travailler SANS professionnels de l’adaptation, en tout cas pour une « gamme grand public » ? « Ah bè non alors ! » (voix de Bourvil).
  • Nous travaillons aux inserts, nous mesurons le RECD, nous faisons de la MIV: quel est l’intérêt de cette recherche ? On sait déjà ce qui se passe au tympan.

Merci à CG pour l’info.

 

*Merci Google Traduction quand même…

En 2000, B.C.J. Moore présentait un nouveau test audiométrique tonal, le TEN-Test, censé être aussi efficace  que l’utilisation des courbes psycho-acoustiques d’accord (85% environ aussi précis, selon ses travaux) dans la détection de « Zones Mortes cochléaires ». Une « Zone Morte » étant définie par l’absence ou une importante raréfaction des cellules cilliées internes (CCI) dans la cochlée, rendant toute amplification prothétique inutile, voire nuisible à l’intelligibilité selon certains auteurs à l’époque.

Ce test est un test d’audiométrie tonale, d’abord effectuée dans le silence (classique…), puis ré-effectuée dans un bruit envoyé de manière ipsilatérale. On demande alors au sujet testé de déterminer son seuil de perception au milieu de ce bruit, appelé « TEN ». TEN= « Threshold-Equalising Noise », ou « Bruit Egalisateur de Seuil ».

C’est justement dans ce « bruit » que réside tout  le test. Son élaboration repose sur des fondements psycho-acoustiques relativement récents. Son but est donc « d’égaliser/équaliser » le seuil à son niveau. Par exemple pour une surdité en pente régulière:

L’audiométrie a d’abord été réalisée au casque (ronds rouges) sans le bruit, par pas de 2dB. Elle est ensuite refaite avec présente du TEN, ici envoyé à 70dB/ERB. Les seuils « tombent » alors à l’intensité d’émission du TEN, et devraient s’aligner aux environs de 70dB HL pour chaque fréquence testée. Aucun autre signal masquant ne permet cela, ni le bruit blanc, ni le bruit rose. Le TEN est en effet élaboré de telle sorte qu’il a un pouvoir masquant égal dans chaque ERB, son intensité n’est pas donnée strictement en dB HL, mais en dB/ERB.

ERB ?

Si vous vous faites le test et que vous utilisez un TEN à 70dB/ERB, vous vous apercevrez que c’est fort et à 80dB/ERB vraiment très fort. ERB signifie « Equivalent Rectangular Bandwidth » ou en gros, « Bande de largeur rectangulaire équivalente ». Sous-entendu: « équivalente à un filtre auditif ».

Ces « filtres auditifs » sont en fait les « Bandes critiques » (mais pas exactement pour Moore), décrites par Fletcher dans les années 1940, au nombre de 24 (échelle des Barks). Elles correspondent à des « filtres cochléaires » présentant de nombreuses particularités. Par exemple, pour un son pur à 1000Hz dans la bande critique 1000Hz (qui fait 160Hz de large); l’ajout d’un second son pur de même intensité à une fréquence proche du premier (ex: 1010Hz) mais dans la même bande critique (compris dans cette bande de 160Hz) ne provoquera pas d’augmentation de sonie. Si le second son pur « sort » de la bande critique 1000Hz, il provoquera un changement de sonie. Ces propriétés (et d’autres encore) ont été étudiées et affinées depuis Fletcher et Zwicker, et il est apparu plus simple de modéliser ces « filtres auditifs » qui ont une forme de cloche (sommet en pointe et extrêmes aplatis), par leur « équivalent rectangulaire » (équivalent rectangulaire de la surface ou aire du filtre auditif):

Filtre auditif et ERB. C. Jurado, D. Robledano - 2007
Filtre auditif et ERB. C. Jurado, D. Robledano - 2007

Mais B.C.J. Moore dans les années 80 a entrepris (avec d’autres) de re-mesurer la largeur des filtres cochléaires en utilisant une technique dite du « bruit à encoche », donnant une meilleure précision dans la détermination de leur largeur en fonction des fréquences. Je précise qu’il n’y a bien entendu ni « 24 bandes critiques », ni « emplacements ERB » fixes et bien délimités dans la cochlée, mais un continuum chevauchant de filtres cochléaires. Si l’on prend une fréquence quelconque, par exemple toujours 1000Hz, on s’aperçoit que la bande critique suivante (voir propriétés plus haut) est à 1770Hz, le filtre précédent à 840Hz, etc. Ceci est valable pour les bandes critiques et les ERB (fréq. centrales différentes pour ces dernières).

Les ERB (échelle en « Cams », par opposition aux « Barks ») sont un peu plus étroites que les bandes critiques, notamment dans les aigus:

BC, ERB et 1/3 d'octave. XD 2012.

Pour une revue détaillée du concept de « filtres cochléaires » et de leurs propriétés (la machine humaine et son oreille en particulier sont incroyables…), la dernière édition de Psychology of Hearing de BCJ Moore est extrêmement détaillée, très didactique et progressive dans l’approche de concepts psycho-acoustiques pas toujours évidents (il appelle ça « Introduction » mais ça fait plus de 400 pages…). Vous trouverez également dans ce document libre (p. 421 à 427) divers développements sur les BC et ERB.

Donc lorsque l’on utilise le TEN à 70dB, il s’agit donc de 70dB dans chaque ERB, d’où le niveau ressenti: fort !

Le but décrit par Moore avec l’utilisation du TEN est d’éviter « l’écoute hors fréquence » (« Off Frequency Listening »). En présumant qu’une zone cochléaire est « morte » selon les critères décrits plus haut, l’augmentation du niveau du son pur de test entraîne un « pattern d’excitation » qui s’élargit sur la membrane basilaire, permettant au final à des cellules cilliées situées plus loin de la zone testée, de « répondre » à la place de la fréquence testée. On obtient alors un « faux-positif » audiométrique faisant penser à une perception réelle dans la zone. En réalité, le patient aura perçu un stimulus plus large bande (type bruit filtré), mais pas le son pur envoyé.

Le but du TEN-Test est donc d’utiliser un bruit masquant (le TEN), étudié spécifiquement pour donner la même intensité de masque dans chaque ERB. En présence du bruit masquant, les seuils doivent donc « tomber » au niveau du bruit puisqu’en saturant chaque ERB, il empêche « l’écoute hors fréquence ». Et ça fonctionne (l’égalisation du seuil au niveau du TEN), validant au passage de manière indirecte le concept d’ERB face au concept de bandes critiques.

Imaginons maintenant qu’une zone cochléaire ne possède plus de CCI. Nous testons (sans bruit masquant) en augmentant le signal de test, le pattern d’excitation augmente et les régions « saines » les plus proches finissent par répondre. Faux-positif. Le re-test en présence du TEN empêche la détection hors fréquence: le seuil masqué « tombe ». Exemple (réel, on en reparle plus bas):

 

TEN-Test
TEN-Test 70dB/ERB

 

Sans masque, le seuil de ce patient est représenté par les croix. Le TEN est ensuite appliqué à 70dB/ERB. Les fréquences 500 à 1000Hz tombent à 76 et 74dB HL, la fréquence 1500Hz tombe à 80dB HL (TEN + 10dB). La fréquence 2000Hz tombe à 86dB HL (TEN + 16dB). Les fréquences 3 et 4KHz ne « bougent » pas (mais elles auraient pu…).

B.C.J. Moore défini le critère de zone morte ainsi:

  • Pour les seuils dans le calme (sans TEN) inférieurs au TEN (ici, inférieurs=meilleurs que 70dB, donc de 500 à 2000Hz compris): Zone Morte Cocléaire (ZMC) si le « seuil masqué » est au moins 10dB au dessus du seuil « non-masqué » et 10dB au-dessus du bruit. Ici, le 1500Hz est « limite » et le 2000Hz est « positif » (ZMC @ 2KHz).
  • Pour les seuils dans le calme (sans TEN) supérieurs au TEN (ici le 3 et 4KHz): ZMC si le « seuil masqué » est juste supérieur au « seuil non-masqué » (ici si le 3KHz était passé de 86dB à 88dB HL et le 4K de 98 à 100dB HL). En réalité, il est conseillé dans ce cas d’utiliser pour ces deux fréquence un TEN plus élevé (80dB/ERB) pour voir si l’on obtient un décalage plus important des seuils masqués…
Et donc dans ce cas, on utiliserait uniquement la bande jusqu’à 1500Hz pour corriger, toute information apportée à partir de 2000Hz étant jugée inutile, voire nuisible à l’intelligibilité.
Voir pour plus de détails le PHONAK Focus 38 (PHONAK fait des trucs très bien 😉 )sur le sujet.

« Mais ça, c’était avant… » (Nous interrompons notre programme par une page de pub !).

Le TEN-Test est facile et rapide à administrer. Ses conclusions, binaires (Mort/Pas mort). Une littérature surabondante sur le sujet a été produite ces dix dernières années. Passé la première période de doute sur les résultats du test, de nombreux audiologistes ont tenté de dégager une règle d’amplification pour les sujets présentant une ZMC ou un TEN-Test positif. La » règle du 1.7Fe » a semblé s’imposer: si une zone morte est dépistée à xHz (appelé Fe), la bande passante de l’amplification ne devra pas dépasser 1.7*Fe.

Cette règle (les anglo-saxons aiment bien ce genre de trucs…) se basait aussi sur des travaux ayant mis en évidence une dégradation de l’intelligibilité chez des patients présentant des ZMC et chez qui la bande passante d’amplification n’avait pas été réduite (Vickers, Moore, Baer, 2001).
Des études plus récentes, et notamment l’article de Cox et al. en 2011, tendent cependant à minimiser l’impact négatif de l’amplification HF chez des sujets présentant des TEN-Tests positifs dans ces régions cochléaires. Une amplification HF maintenue resterait bénéfique dans ces cas. Ces auteurs réitèrent d’ailleurs dans un article à paraître bientôt: il n’est pas si évident que la réduction de bande passante d’amplification soit une bonne solution lors de TEN-Tests positifs.
Un résumé de leurs articles est disponible sur le blog Starkey.

Alors quoi ?

On fait un TEN-Test, il est positif. Certains auteurs disent « Pas d’amplification sur une supposée ZMC ! » et d’autres « Allez-y. Au pire ça ne fera que légèrement baisser le confort, au mieux, améliorer l’intelligibilité ! ».

Faire ou ne pas faire de TEN-Test ? That is the question !

J’enfonce le clou: certaines équipes de neuro-physiologie françaises sont très dubitatives sur le résultat immédiat du TEN-Test et son interprétation très « on/off » si je puis dire.

Je m’explique. En reprenant le patient précédent (oreille gauche). Ce monsieur a été testé lors du premier RDV de bilan pré-prothétique. Donc TEN-Test douteux à 1.5K et positif à 2K. Puis ce patient a été re-testé après deux mois d’appareillage (et donc de stimulation):

Là, on ne joue plus: les carrés gris = premier test, carrés bleus = second test (post-app. 2 mois). Le 1.5K est passé « négatif », le 2K est passé « limite ». TEN-Test en gros « négatif », amplification jusqu’à 2.5/3K environ supportée sans aucun problème.

Certes, le premier TEN-Test aura permis de démarrer une correction réduite en bande passante et s’élargissant ensuite. Le second TEN-Test n’aura fait que confirmer une sensation d’utilité d’une zone qui n’avait plus été stimulée depuis bien longtemps, mais qui était dans une moindre mesure certes, fonctionnelle. Je ne suis pas neuro-biologiste, mais sans trop m’avancer, le premier TEN-Test aura certainement mis en évidence une désafférentation de cette zone cochléaire, et le second, l’effet de la simulation sur la même zone et au-delà. J’attends avec impatience l’audiologiste qui pourra mener un test/re-test en pré/post-appareillage sur un échantillon conséquent et significatif…

Le TEN-Test est aujourd’hui disponible en routine sur le Nouvel Aurical, Affinity, et c’est tant mieux. Il est un outil de diagnostique irremplaçable pour l’audioprothésiste, permettant un accompagnement progressif dans la correction. L’adaptation prothétique reprend tout son sens: un acte professionnel sur le long terme. Pas un « objet ». Mais il doit être interprété avec prudence, notamment sur des résultats peu marqués.

XD.

PS: @ Maëlgad: j’y aurais mis le temps, mais je n’avais pas oublié que je devais t’envoyer ces infos 😉

Vous avez été intéressés par ça.

Mais malgré cette extraordinaire « invention », cette fonction de mesure en dB SPL des seuils au tympan, ce système simple de mesure du SPLoGramme n’a pas été implémenté sur les matériels actuels.

Et vous pensez (et vous avez raison) qu’une partie du succès d’une adaptation passe par une connaissance précise du SPLoGramme.

Il reste donc la solution audiométrique des inserts EAR, rendue encore plus robuste par la mesure du RECD.

Tout ça pour quoi ?

Pour éviter ça:

Régression des MIV réalisées sur 50 patients, base audiométrique casque - X. DELERCE, JB BARON - 2012

Et ça, c’est ce qui se passe en fond de conduits, lorsque vous mesurez vos seuils au casque, et que vous effectuez ensuite le pré-réglage de vos aides auditives. Dans un monde idéal, si nous (les audios), ou eux (les fabricants), connaissions le seuil en dB SPL au tympan de nos patients, tous les petits points jaunes (mesures sur 50 patients/50 oreilles/de 500 à 4000Hz/5 fabricants) devraient être alignés sur la ligne noire en pointillés (la cible) ou jaune. A ce moment là, ce qu’indiquent les logiciels correspondrait à ce qui se passe réellement dans le conduit. Les aides auditives seraient « sur cibles » et le réglage (accompagnement) pourrait commencer sur de bonnes bases. Pour rattraper, cette énorme imprécision, il va falloir passer de nombreux RDV en tâtonnements divers, mesures en champ libre, etc. Je précise quand même que dans ce lot, certains fabricants s’en tirent un (tout petit) peu mieux que d’autres, mais d’un « chouia ».

Vous pensez qu’en mesurant les seuils avec l’aide auditive (audiométrie in-situ), on obtiendra une meilleure « adaptation » à la cible, donc que le fabricant arrivera mieux à estimer le seuil au tympan ?

On reprend les mêmes:

Régression des MIV réalisées sur 50 patients, base audiométrique in-situ. X.DELERCE, JB BARON - 2012

 « Caramba ! Encore raté ! »* (* »L’oreille cassée », pour les connaisseurs…). Les pointillés verts (et jaunes pour le casque) donnent l’intervalle de confiance 95%. En gros, à 30dB SPL, vous ne savez pas où vous êtes… ! On est loin des 2 à 3dB (doublement de sonie) de tolérance.

Pas de mystères, pour savoir précisément se qui se passe en fond de conduit, il faut, soit y mettre une sonde, soit délivrer le signal (audiométrique) au plus près du tympan lors de l’audiométrie.

  • Dans le cas de la sonde, un des deux fabricants proposant une MIV par l’aide auditive ne proposera plus cette fonction sur ses prochains contours d’oreille. Pourquoi, alors que cela s’avère une technique redoutable de précision ? Parce que seulement 10% des audios l’utilisent au niveau mondial… (stats retours SAV). Très très dommage pour tout le monde.
  • Dans le cas de l’audiométrie, les choses semblent bouger si j’en crois un article de recherche récent: Behavioral Hearing Thresholds Between 0.125 and 20 kHz Using Depth-Compensated Ear Simulator Calibration.

Ne fuyez pas ! Sous le nom barbare de « Calibration sur simulateur d’oreille avec compensation de profondeur », semble se cacher le futur de nos audiométries. Les auteurs explorent une piste de calibration « in-vivo » permettant lors de l’utilisation d’inserts classiques (type EAR + mousses), d’estimer la profondeur d’insertion dans le conduit, et donc le volume résiduel entre l’extrémité de la mousse et le tympan, ce qui permettrait de connaître avec précision le RECD du patient lors de l’audiométrie. Tympans « sains » et conduits propres de rigueur !

Cet article ne semble pas financé par un fabricant d’aides auditives ou d’audiomètres, mais on peut penser que si nous, audioprothésistes, ne nous emparons pas de la rigueur et de la précision des mesures au tympan, d’autres le feront à notre place.

XD – JBB.

Bienvenu

Bienvenu chez Blog-Audioprothesiste.fr !

Qui Sommes nous ?

Contactez nous !

Je contacte Sébastien
Je contacte Xavier
Je contacte Jean Michel