Catégorie : Audiométrie tonale

En 2000, B.C.J. Moore présentait un nouveau test audiométrique tonal, le TEN-Test, censé être aussi efficace  que l’utilisation des courbes psycho-acoustiques d’accord (85% environ aussi précis, selon ses travaux) dans la détection de « Zones Mortes cochléaires ». Une « Zone Morte » étant définie par l’absence ou une importante raréfaction des cellules cilliées internes (CCI) dans la cochlée, rendant toute amplification prothétique inutile, voire nuisible à l’intelligibilité selon certains auteurs à l’époque.

Ce test est un test d’audiométrie tonale, d’abord effectuée dans le silence (classique…), puis ré-effectuée dans un bruit envoyé de manière ipsilatérale. On demande alors au sujet testé de déterminer son seuil de perception au milieu de ce bruit, appelé « TEN ». TEN= « Threshold-Equalising Noise », ou « Bruit Egalisateur de Seuil ».

C’est justement dans ce « bruit » que réside tout  le test. Son élaboration repose sur des fondements psycho-acoustiques relativement récents. Son but est donc « d’égaliser/équaliser » le seuil à son niveau. Par exemple pour une surdité en pente régulière:

L’audiométrie a d’abord été réalisée au casque (ronds rouges) sans le bruit, par pas de 2dB. Elle est ensuite refaite avec présente du TEN, ici envoyé à 70dB/ERB. Les seuils « tombent » alors à l’intensité d’émission du TEN, et devraient s’aligner aux environs de 70dB HL pour chaque fréquence testée. Aucun autre signal masquant ne permet cela, ni le bruit blanc, ni le bruit rose. Le TEN est en effet élaboré de telle sorte qu’il a un pouvoir masquant égal dans chaque ERB, son intensité n’est pas donnée strictement en dB HL, mais en dB/ERB.

ERB ?

Si vous vous faites le test et que vous utilisez un TEN à 70dB/ERB, vous vous apercevrez que c’est fort et à 80dB/ERB vraiment très fort. ERB signifie « Equivalent Rectangular Bandwidth » ou en gros, « Bande de largeur rectangulaire équivalente ». Sous-entendu: « équivalente à un filtre auditif ».

Ces « filtres auditifs » sont en fait les « Bandes critiques » (mais pas exactement pour Moore), décrites par Fletcher dans les années 1940, au nombre de 24 (échelle des Barks). Elles correspondent à des « filtres cochléaires » présentant de nombreuses particularités. Par exemple, pour un son pur à 1000Hz dans la bande critique 1000Hz (qui fait 160Hz de large); l’ajout d’un second son pur de même intensité à une fréquence proche du premier (ex: 1010Hz) mais dans la même bande critique (compris dans cette bande de 160Hz) ne provoquera pas d’augmentation de sonie. Si le second son pur « sort » de la bande critique 1000Hz, il provoquera un changement de sonie. Ces propriétés (et d’autres encore) ont été étudiées et affinées depuis Fletcher et Zwicker, et il est apparu plus simple de modéliser ces « filtres auditifs » qui ont une forme de cloche (sommet en pointe et extrêmes aplatis), par leur « équivalent rectangulaire » (équivalent rectangulaire de la surface ou aire du filtre auditif):

Filtre auditif et ERB. C. Jurado, D. Robledano - 2007
Filtre auditif et ERB. C. Jurado, D. Robledano - 2007

Mais B.C.J. Moore dans les années 80 a entrepris (avec d’autres) de re-mesurer la largeur des filtres cochléaires en utilisant une technique dite du « bruit à encoche », donnant une meilleure précision dans la détermination de leur largeur en fonction des fréquences. Je précise qu’il n’y a bien entendu ni « 24 bandes critiques », ni « emplacements ERB » fixes et bien délimités dans la cochlée, mais un continuum chevauchant de filtres cochléaires. Si l’on prend une fréquence quelconque, par exemple toujours 1000Hz, on s’aperçoit que la bande critique suivante (voir propriétés plus haut) est à 1770Hz, le filtre précédent à 840Hz, etc. Ceci est valable pour les bandes critiques et les ERB (fréq. centrales différentes pour ces dernières).

Les ERB (échelle en « Cams », par opposition aux « Barks ») sont un peu plus étroites que les bandes critiques, notamment dans les aigus:

BC, ERB et 1/3 d'octave. XD 2012.

Pour une revue détaillée du concept de « filtres cochléaires » et de leurs propriétés (la machine humaine et son oreille en particulier sont incroyables…), la dernière édition de Psychology of Hearing de BCJ Moore est extrêmement détaillée, très didactique et progressive dans l’approche de concepts psycho-acoustiques pas toujours évidents (il appelle ça « Introduction » mais ça fait plus de 400 pages…). Vous trouverez également dans ce document libre (p. 421 à 427) divers développements sur les BC et ERB.

Donc lorsque l’on utilise le TEN à 70dB, il s’agit donc de 70dB dans chaque ERB, d’où le niveau ressenti: fort !

Le but décrit par Moore avec l’utilisation du TEN est d’éviter « l’écoute hors fréquence » (« Off Frequency Listening »). En présumant qu’une zone cochléaire est « morte » selon les critères décrits plus haut, l’augmentation du niveau du son pur de test entraîne un « pattern d’excitation » qui s’élargit sur la membrane basilaire, permettant au final à des cellules cilliées situées plus loin de la zone testée, de « répondre » à la place de la fréquence testée. On obtient alors un « faux-positif » audiométrique faisant penser à une perception réelle dans la zone. En réalité, le patient aura perçu un stimulus plus large bande (type bruit filtré), mais pas le son pur envoyé.

Le but du TEN-Test est donc d’utiliser un bruit masquant (le TEN), étudié spécifiquement pour donner la même intensité de masque dans chaque ERB. En présence du bruit masquant, les seuils doivent donc « tomber » au niveau du bruit puisqu’en saturant chaque ERB, il empêche « l’écoute hors fréquence ». Et ça fonctionne (l’égalisation du seuil au niveau du TEN), validant au passage de manière indirecte le concept d’ERB face au concept de bandes critiques.

Imaginons maintenant qu’une zone cochléaire ne possède plus de CCI. Nous testons (sans bruit masquant) en augmentant le signal de test, le pattern d’excitation augmente et les régions « saines » les plus proches finissent par répondre. Faux-positif. Le re-test en présence du TEN empêche la détection hors fréquence: le seuil masqué « tombe ». Exemple (réel, on en reparle plus bas):

 

TEN-Test
TEN-Test 70dB/ERB

 

Sans masque, le seuil de ce patient est représenté par les croix. Le TEN est ensuite appliqué à 70dB/ERB. Les fréquences 500 à 1000Hz tombent à 76 et 74dB HL, la fréquence 1500Hz tombe à 80dB HL (TEN + 10dB). La fréquence 2000Hz tombe à 86dB HL (TEN + 16dB). Les fréquences 3 et 4KHz ne « bougent » pas (mais elles auraient pu…).

B.C.J. Moore défini le critère de zone morte ainsi:

  • Pour les seuils dans le calme (sans TEN) inférieurs au TEN (ici, inférieurs=meilleurs que 70dB, donc de 500 à 2000Hz compris): Zone Morte Cocléaire (ZMC) si le « seuil masqué » est au moins 10dB au dessus du seuil « non-masqué » et 10dB au-dessus du bruit. Ici, le 1500Hz est « limite » et le 2000Hz est « positif » (ZMC @ 2KHz).
  • Pour les seuils dans le calme (sans TEN) supérieurs au TEN (ici le 3 et 4KHz): ZMC si le « seuil masqué » est juste supérieur au « seuil non-masqué » (ici si le 3KHz était passé de 86dB à 88dB HL et le 4K de 98 à 100dB HL). En réalité, il est conseillé dans ce cas d’utiliser pour ces deux fréquence un TEN plus élevé (80dB/ERB) pour voir si l’on obtient un décalage plus important des seuils masqués…
Et donc dans ce cas, on utiliserait uniquement la bande jusqu’à 1500Hz pour corriger, toute information apportée à partir de 2000Hz étant jugée inutile, voire nuisible à l’intelligibilité.
Voir pour plus de détails le PHONAK Focus 38 (PHONAK fait des trucs très bien 😉 )sur le sujet.

« Mais ça, c’était avant… » (Nous interrompons notre programme par une page de pub !).

Le TEN-Test est facile et rapide à administrer. Ses conclusions, binaires (Mort/Pas mort). Une littérature surabondante sur le sujet a été produite ces dix dernières années. Passé la première période de doute sur les résultats du test, de nombreux audiologistes ont tenté de dégager une règle d’amplification pour les sujets présentant une ZMC ou un TEN-Test positif. La » règle du 1.7Fe » a semblé s’imposer: si une zone morte est dépistée à xHz (appelé Fe), la bande passante de l’amplification ne devra pas dépasser 1.7*Fe.

Cette règle (les anglo-saxons aiment bien ce genre de trucs…) se basait aussi sur des travaux ayant mis en évidence une dégradation de l’intelligibilité chez des patients présentant des ZMC et chez qui la bande passante d’amplification n’avait pas été réduite (Vickers, Moore, Baer, 2001).
Des études plus récentes, et notamment l’article de Cox et al. en 2011, tendent cependant à minimiser l’impact négatif de l’amplification HF chez des sujets présentant des TEN-Tests positifs dans ces régions cochléaires. Une amplification HF maintenue resterait bénéfique dans ces cas. Ces auteurs réitèrent d’ailleurs dans un article à paraître bientôt: il n’est pas si évident que la réduction de bande passante d’amplification soit une bonne solution lors de TEN-Tests positifs.
Un résumé de leurs articles est disponible sur le blog Starkey.

Alors quoi ?

On fait un TEN-Test, il est positif. Certains auteurs disent « Pas d’amplification sur une supposée ZMC ! » et d’autres « Allez-y. Au pire ça ne fera que légèrement baisser le confort, au mieux, améliorer l’intelligibilité ! ».

Faire ou ne pas faire de TEN-Test ? That is the question !

J’enfonce le clou: certaines équipes de neuro-physiologie françaises sont très dubitatives sur le résultat immédiat du TEN-Test et son interprétation très « on/off » si je puis dire.

Je m’explique. En reprenant le patient précédent (oreille gauche). Ce monsieur a été testé lors du premier RDV de bilan pré-prothétique. Donc TEN-Test douteux à 1.5K et positif à 2K. Puis ce patient a été re-testé après deux mois d’appareillage (et donc de stimulation):

Là, on ne joue plus: les carrés gris = premier test, carrés bleus = second test (post-app. 2 mois). Le 1.5K est passé « négatif », le 2K est passé « limite ». TEN-Test en gros « négatif », amplification jusqu’à 2.5/3K environ supportée sans aucun problème.

Certes, le premier TEN-Test aura permis de démarrer une correction réduite en bande passante et s’élargissant ensuite. Le second TEN-Test n’aura fait que confirmer une sensation d’utilité d’une zone qui n’avait plus été stimulée depuis bien longtemps, mais qui était dans une moindre mesure certes, fonctionnelle. Je ne suis pas neuro-biologiste, mais sans trop m’avancer, le premier TEN-Test aura certainement mis en évidence une désafférentation de cette zone cochléaire, et le second, l’effet de la simulation sur la même zone et au-delà. J’attends avec impatience l’audiologiste qui pourra mener un test/re-test en pré/post-appareillage sur un échantillon conséquent et significatif…

Le TEN-Test est aujourd’hui disponible en routine sur le Nouvel Aurical, Affinity, et c’est tant mieux. Il est un outil de diagnostique irremplaçable pour l’audioprothésiste, permettant un accompagnement progressif dans la correction. L’adaptation prothétique reprend tout son sens: un acte professionnel sur le long terme. Pas un « objet ». Mais il doit être interprété avec prudence, notamment sur des résultats peu marqués.

XD.

PS: @ Maëlgad: j’y aurais mis le temps, mais je n’avais pas oublié que je devais t’envoyer ces infos 😉

Vous avez été intéressés par ça.

Mais malgré cette extraordinaire « invention », cette fonction de mesure en dB SPL des seuils au tympan, ce système simple de mesure du SPLoGramme n’a pas été implémenté sur les matériels actuels.

Et vous pensez (et vous avez raison) qu’une partie du succès d’une adaptation passe par une connaissance précise du SPLoGramme.

Il reste donc la solution audiométrique des inserts EAR, rendue encore plus robuste par la mesure du RECD.

Tout ça pour quoi ?

Pour éviter ça:

Régression des MIV réalisées sur 50 patients, base audiométrique casque - X. DELERCE, JB BARON - 2012

Et ça, c’est ce qui se passe en fond de conduits, lorsque vous mesurez vos seuils au casque, et que vous effectuez ensuite le pré-réglage de vos aides auditives. Dans un monde idéal, si nous (les audios), ou eux (les fabricants), connaissions le seuil en dB SPL au tympan de nos patients, tous les petits points jaunes (mesures sur 50 patients/50 oreilles/de 500 à 4000Hz/5 fabricants) devraient être alignés sur la ligne noire en pointillés (la cible) ou jaune. A ce moment là, ce qu’indiquent les logiciels correspondrait à ce qui se passe réellement dans le conduit. Les aides auditives seraient « sur cibles » et le réglage (accompagnement) pourrait commencer sur de bonnes bases. Pour rattraper, cette énorme imprécision, il va falloir passer de nombreux RDV en tâtonnements divers, mesures en champ libre, etc. Je précise quand même que dans ce lot, certains fabricants s’en tirent un (tout petit) peu mieux que d’autres, mais d’un « chouia ».

Vous pensez qu’en mesurant les seuils avec l’aide auditive (audiométrie in-situ), on obtiendra une meilleure « adaptation » à la cible, donc que le fabricant arrivera mieux à estimer le seuil au tympan ?

On reprend les mêmes:

Régression des MIV réalisées sur 50 patients, base audiométrique in-situ. X.DELERCE, JB BARON - 2012

 « Caramba ! Encore raté ! »* (* »L’oreille cassée », pour les connaisseurs…). Les pointillés verts (et jaunes pour le casque) donnent l’intervalle de confiance 95%. En gros, à 30dB SPL, vous ne savez pas où vous êtes… ! On est loin des 2 à 3dB (doublement de sonie) de tolérance.

Pas de mystères, pour savoir précisément se qui se passe en fond de conduit, il faut, soit y mettre une sonde, soit délivrer le signal (audiométrique) au plus près du tympan lors de l’audiométrie.

  • Dans le cas de la sonde, un des deux fabricants proposant une MIV par l’aide auditive ne proposera plus cette fonction sur ses prochains contours d’oreille. Pourquoi, alors que cela s’avère une technique redoutable de précision ? Parce que seulement 10% des audios l’utilisent au niveau mondial… (stats retours SAV). Très très dommage pour tout le monde.
  • Dans le cas de l’audiométrie, les choses semblent bouger si j’en crois un article de recherche récent: Behavioral Hearing Thresholds Between 0.125 and 20 kHz Using Depth-Compensated Ear Simulator Calibration.

Ne fuyez pas ! Sous le nom barbare de « Calibration sur simulateur d’oreille avec compensation de profondeur », semble se cacher le futur de nos audiométries. Les auteurs explorent une piste de calibration « in-vivo » permettant lors de l’utilisation d’inserts classiques (type EAR + mousses), d’estimer la profondeur d’insertion dans le conduit, et donc le volume résiduel entre l’extrémité de la mousse et le tympan, ce qui permettrait de connaître avec précision le RECD du patient lors de l’audiométrie. Tympans « sains » et conduits propres de rigueur !

Cet article ne semble pas financé par un fabricant d’aides auditives ou d’audiomètres, mais on peut penser que si nous, audioprothésistes, ne nous emparons pas de la rigueur et de la précision des mesures au tympan, d’autres le feront à notre place.

XD – JBB.

Juste pour info, patient du début de semaine.

Voici la tonale:

Voici la vocale (cochléaires LAFON):

Là, ça ressemble à ce que tu as eu, Sébastien…

En « grattant » un peu, c’est à dire avec un TEN-Test:

L’OD n’est même pas montrée (tout est positif après 1K). L’OG, après utilisation du TEN à 80dB HL (barre noire rajoutée), fait plonger le 1.5K, puis le 3K. La cochlée est « trouée » ou en tout cas bien désafférentée (flèches).

Que faire ? Pas grand chose, sinon au moins pouvoir expliquer le problème, sans solutions (évidentes)…

Le TEN-Test: 5 min. de passation, des heures de galère évitées !

 

Progressivement, cet article va évoluer, par mise en ligne de divers documents sur la mesure in-vivo. Revenez faire un tour régulièrement…

L’atelier (fr) « La mesure in-vivo d’efficacité de l’appareillage auditif » du congrès UNSAF 2010.

Le (fr) document fil directeur de l’atelier.

Une (fr) synthèse (toute personnelle) du processus réglages et mesures.

A la demande de certain(e)s, (fr) un fichier .iax de configuration de test REM pour Affinity (version logicielle 2.0.4 minimum): à télécharger et importer comme test dans votre Affinity.

Concernant les diverses sources de renseignements au sujet de la mesure in-vivo:

Terminologie:

  • On commence en Français (!) par (fr) un document établi par Marco TORREANI (Widex), avec humour parfois, sur les principaux termes de la mesure in-vivo (juste un point de détail: RETSPL ne signifie pas « real ear threshold… » mais « reference equivalent threshold… », voilà, c’est dit !)
  • toujours du même auteur, (fr) un descriptif des bruits ICRA, mais ces derniers vont être supplantés par l’utilisation de l’ISTS (voir plus bas)

Les sites internet:

Concernant les bases de la MIV, c’est à dire acoustique et psychoacoustique (intégration des sons complexes type parole):

  • un chouette site (fr) sur les ondes stationnaires et résonateurs 1/2 onde (le conduit auditif ouvert)… des révisions !
  • … et un conduit fermé par un embout avec évent, ça devient un (fr) résonateur de Helmoltz, ce que l’on mesure en in-vivo appareil arrêté et en place sur l’oreille (le REOR/REOG)
  • Un cours très intéressant sur (fr) la sonie des sons complexes, en français (!), abordable et qui donne une bonne compréhension de la perception par l’oreille humaine de la parole, de la largeur des bandes critiques ou des ERB (B.C.J. Moore) et du pourquoi de l’analyse en 1/3 d’octave de la parole par les chaînes de mesure in-vivo et des cibles de REAR pour un signal de parole
  • Concernant la résonance du CAE chez l’enfant, ainsi que le phénomène de « noeud à 6000Hz »: « MAGERA P., LURQUIN P. Evolution de la résonance du conduit auditif externe chez le nouveau-né et le jeune enfant ». Cahiers de l’audition n°88.
  • Les (fr) effets produits par un mauvais placement de la sonde

La transposition des données de l’audiométrie (dB HL) en dB SPL au tympan (SPLoGramme):

Le SPLoGramme est un terme initialement utilisé par le groupe DSL.

La difficuté en appareillage auditif est de connaître la quantité d’énergie au tympan, en dBSPL, nécessaire à déclencher la sensation auditive, alors que l’on travaille en dB HL sur des bases coupleurs (6cc pour le casque, 2cc pour les inserts). Des moyens existent pour « approcher » ces valeurs du SPLoGramme, soit par estimation à partir des normes ISO, extrapolation du MAP (voir plus loin), Inserts et RECD, …

  • Quelques exemples de dérivation des données HL vers le SPLoGramme récapitulées (fr) dans ce pdf
  • L’usage du SPLoGramme pour DSL (fr), tirée du (en) site DSL
  • Le passage HL–>SPL est régit par (en) différentes normes ISO selon les transducteurs de mesure utilisés…
  • … mais formules de calcul et fabricants utilisent fréquemment le MAP (Minimum Audible Pressure) pour leurs estimations des niveaux sonores au tympan: un article de (en) Killion (1978) et (en) plus récent, du même
  • Vous trouverez dans ce document Interacoustics les (en) dérivations utilisées pour passer du champ libre aux dB SPL au tympan, tableaux de conversions tirés de BENTLER et PAVLOVIC
  • Des dérivations HL–>SPL individualisées sont possibles (souhaitables ?), comme l’usage (en) du REDD, du (en) RECD, voire la (fr) mesure directe en dB SPL dans le conduit
  • En général, l’usage des (en) inserts (EAR 5A) en audiométrie et l’utilisation des RECD,(fr) mesurés ou (fr) statistiques, outre les avantages inhérents à ce type de matériel, permettent une bonne approche de la réalité acoustique en fond de conduit, en restant facilement utilisables en usage quotidien
  • Vous trouverez dans (fr) cet article une approche de la problématique des transformations (dérivations) HL->SPL(tympan) et les solutions pour approcher au mieux le SPLoGramme.

Bref, la MIV, réputée comme « juge de paix » de l’appareillage se base (cibles et SPLoGramme) sur des approximations parfois importantes. Il faudra accepter cette erreur ou chercher à la réduire par les moyens cités plus haut.

Mesure in-vivo de signaux de parole:

La mesure in-vivo de la parole, surtout en niveaux de sortie est appelée à (en) devenir une mesure incontournable (attention: document CONFIDENTIEL, c’est marqué dessus!!!!), notamment avec les évolutions logicielles des chaînes de mesure actuelles permettant le calcul de la dynamique du signal (crêtes et autres niveaux d’énergie). De plus la mise au point de nouveaux signaux vocaux, standardisés, permet une utilisation universelle et réaliste des performances des AA, toujours dans le but de ne pas désactiver les réducteurs de bruit.

  • l’article incontournable de ce genre de mesure est en français (chouette!!): « Spectre à long terme de la parole en valeurs crêtes » de Hilaire, Renard, De Bock, Vervoort, Lurquin, et Lefevre, paru dans les cahiers de l’audition Vol. 4, N°3, mai-juin 2002. Ne boudons pas notre plaisir pour une fois qu’un tel article est disponible en français. Il permet de bien appréhender la difficulté de travailler en REAR à la voix et de bien cerner l’apport des informations de crêtes.
  • concernant les nouveaux signaux vocaux, on citera l’ISTS (fr) décrit dans ce blog, et téléchargeable sur le (fr) site de l’EHIMA
  • La visualisation de signaux vocaux dans le champ dynamique du malentendant porte le nom de Speech Mapping, Visible Speech, etc., vous trouverez dans (en) ce document Audioscan la description de cette mesure et le pourquoi de l’analyse par 1/3 d’octave. La dynamique du signal par analyse percentile est également très intéressante.
  • l’analyse percentile du signal permet d’en visualiser l’énergie dans la dynamique souhaitée. En général, on représentera la zone d’énergie +12/-18dB par rapport au niveau moyen, ce qui correspond aux percentiles 99 (niveau dépassé 1% du temps= les crêtes) et 30 (dépassé 70% du temps= -18dB). Vous trouverez dans ce document quelques grandes lignes sur la lecture des zones d’énergies de la parole mesurée in-vivo.
  • La norme IEC 60118-15 (en) (http://shop.bsigroup.com/en/ProductDetail/?pid=000000000030206924), détaille la façon dont l’analyse percentile doit être conduite: soit par analyse FFT sur 1024 points , soit la prise en compte de 50 mesures conduites sur une fenêtre de temps de temps de 100ms (sources et détails: A. GAULT, Widex)
  • De l’émergence du niveau moyen (analyse FFT par 1/3 d’octave) par rapport au seuil (SPLoGramme point par point en 1/2 octave), on définira l’intelligibilité de la parole: le (en) SII (Speech Intelligibility Index). Ce SII noté en %, représente les « chances » d’intelligibilité. Par exemple, le niveau moyen de la parole juste sur le seuil donne un SII de 33%,on attendrait donc un SRT (50% d’intelligibilité) à ce niveau. Pourcentages obtenu par tests sur des normoentendants… mais ce SII est certainement utilisé par les AA récentes afin de maximiser l’intelligibilité en situations bruyantes (le petit programme téléchargeable sur le site SII).
  • Lors d’une mesure in-vivo d’un signal de parole en niveau de sortie (REAR), ce dernier, analysé en FFT par 1/3 d’octave (par exemple), est affiché sur le SPLoGramme qui lui, représente le seuil au tympan mesuré point par point… Cette superposition  est rendu possible par l’utilisation de pondérations spécifiques.
  • Pour une revue technique des différents signaux utilisés en MIV depuis les débuts jusqu’à l’ISTS, voir l’article d’ A. GAULT et X. DELERCE.

Mesure in-vivo et appareillages « ouverts »:

L’appareillage ouvert, sans occlusion ou occlusion partielle du conduit auditif, le plus souvent sur des surdités légères à moyennes, n’est pas anodin sur le plan de la correction. D’une part, chez ces sujets peu gênés, la moindre erreur est vite fatale (rejet de l’appareillage), d’autre part, tous les facteurs acoustiques propres au conduit ouvert sont réunis pour rendre compliquée la mesure. En effet, si le conduit est totalement ouvert, la MIV risque se faire dans un noeud de longueur d’onde à proximité du tympan (voir premiers docs de cet article); également, qui dit conduit ouvert dit fuite acoustique du signal amplifié vers le micro de référence (voir idem); enfin, pour des patients peu malentendant, la perte de résonance du conduit auditif par occlusion partielle ou totale peut s’avérer être une perte d’identité acoustique. Vous trouverez ci-dessous quelques articles sur ces aspects:

  • Tout d’abord, il est incontournable de lire l’article de Clément SANCHEZ sur la mesure in-vivo d’appareillage ouvert, tout en considérant bien que cette méthode de mesure concerne (et concernera de plus en plus) TOUS les appareillages dont l’anti-larsen est performant, et l’appareil, puissant.
  • un article très intéressant sur  l’appareillage ouvert et les méthodes de mesure (GI ou REAR ?), l’occlusion, la fuite acoustique… bref, en (en) « 10 conseils à emporter », Mueller et Ricketts dressent un tableau de la MIV de l’appareillage ouvert très clair (merci Clément).
  • concernant la notion de « perte d’insertion » liée à l’introduction d’un appareillage auditif dans le conduit, totalement ou peu occlusif, cet (en) article intéressant de Wang, qui rejoint le précédent.
  • « Mythes et réalités » (en) concernant la mesure électroacoustique des AA open
  • Un « technical topic » de Bernafon qui se demande (en) « Où est allé mon gain ? » et pose le problème des fuites acoustiques propres aux appareillages ouverts et des phénomènes acoustiques en résultant (opposition de phase entre signal « sortant » et « entrant » par l’aération, impossibilité de correction des graves dès 2mm d’aération, etc…)
  • Où va le gain sur un GROS évent ? (fr) là !!, ou ailleurs (fr), voir les effets moyens d’évents courts (RIC et autres) et longs (embouts « classiques »)

Mesure in-vivo et appareillage de l’enfant:

Voilà pour un premier tour d’horizon des possibilités actuelles de la mesure in-vivo. Si vous avez des documents intéressants, c’est avec grand plaisir qu’il seront ajoutés à la bibliothèque en ligne. Je l’enrichirai progressivement de mon côté au fil de mes « découvertes ».

Merci à Alexandre GAULT et Jean-Baptiste DELANDE (Widex), Nadège DURAND, Clément GEORGET, Matthieu FOURNIER (pour son oreille !), Catherine CATELIN (idem !), Ph. MICHEL-POISSON (pour ses remarques), Philippe GADAUD, Sébastien GENY.

XD.

Le TEN (Threshold Equivalent Noise = bruit égalisateur de seuil) est le signal utilisé  pour effectuer un TEN-Test, ou test de zones mortes cochléaires.

Mis au point par B.C.J. Moore en 2000, ses caractéristiques spectrales (spectre et densité) permettent de pratiquer un masquage ipsilatéral qui va faire « tomber » le seuil à la valeur d’émission du TEN (voire plus bas si une zone morte est présente): c’est à dire que si vous avez un seuil à 10dB HL sur toutes les fréquences (on présume que vous n’avez pas de ZMC !) et que vous envoyez le TEN à 70dB HL par exemple, votre seuil en présence de ce bruit va tomber à 70dB HL sur toutes les fréquences (500 à 4000Hz).

Ce type de masquage n’est ABSOLUMENT pas possible avec un bruit blanc ou même un Speech Noise (de spectre pourtant proche).

Spectre du TEN(HL)
Spectre du TEN(HL)

Le TEN-Test était jusque là disponible en CD de test, l’un en HL, l’autre en SPL.

Pour la première fois (à ma connaissance), le TEN est disponible sur une chaîne de mesure (Affinity, à partir de la version 2.04) au même titre q’un WN ou SN !

Il faut faire activer cette fonction (payant, environ 200€ en MAJ) et surtout calibrer ce signal (donc retour à la case étalonnage) pour pouvoir l’utiliser.

Il va donc pouvoir être possible de faire « en routine » des tests de zones mortes (ou « inertes », « désafférentées »… avant d’être déclarées définitivement perdues, après période de stimulation par appareillage !).

L’intégration du TEN(HL) Test sur Affinity 2.0.4 (par B.C.J. Moore).

Pour en savoir un peu plus sur la procédure, vous trouverez des détails sur le résumé des conférences et ateliers du Congrès 2004: pages 20 et suivantes, la conférence de Moore, et pages 51 et suivantes, l’atelier.

C’est l’histoire d’un « serpent de mer » de l’audioprothèse : les fabricants utilisent-ils les seuils subjectifs d’inconfort que nous prenons la peine de mesurer ?

Et je pense que beaucoup de monde a fait la même chose : saisir un audiogramme tonal à 60dB HL plat à droite, sans inconfort, et le même à gauche avec un SSI (Seuil Subjectif d’Inconfort) à 90dB HL sur toutes les fréquences. On rentre dans un logiciel d’adaptation, on choisi le même appareil des deux côtés, et on regarde ce qui se passe avec la formule par défaut du fabricant…

Et là, trois possibilités :

  • Aucune différence de réglages entre les deux oreilles (assez courant)
  • Aucune différence dans le réglage des compressions MAIS le niveau de sortie maximum, si le réglage existe, est corrélé au SSI (a tendance à se développer)
  • L’oreille présentant la dynamique réduite a des réglages adaptés en compression et niveau maximum de sortie (assez rare par défaut)

Donc on peut en déduire que majoritairement, les fabricants n’utilisent pas les seuils d’inconfort mesurés par les audioprothésistes, en tout cas pour leur calcul des compressions et autres points d’enclenchements.

Ce n’est pas tout à fait surprenant car la formule de calcul utilisée est souvent NAL-NL1 ou une adaptation « maison » de NAL-NL1. Or la formule australienne utilise un seuil d’inconfort statistique. Un peu vexant pour les audios qui pratiquent la mesure du SSI !

L’apparition de systèmes de gestion des bruits impulsionnels en entrée a modifié un peu cette approche puisque certains fabricants proposant ces systèmes proposent des « mix » entre un calcul des compressions basé sur la dynamique statistique et un MPO ou « pseudo-écrêtage » basé sur le SSI. C’est mieux, mais on ne nous laisse pas encore toutes les clés de la maison…

Par contre, il est toujours possible d’utiliser des formules de calcul intégrant le SSI mesuré dans le calcul des compression et MPO, c’est le cas de DSL I/O par exemple, souvent proposée par défaut lors des appareillages pédiatriques, bien qu’il ne soit pas évident d’obtenir un SSI avant 10ans.

Il faut reconnaître aussi que la mesure d’un seuil d’inconfort est très subjective (c’est le cas de le dire) : elle dépend presque autant du patient, de sa peur ou au contraire de sa bravoure (!), que du testeur et de sa limite posée (douleur ? limite du supportable ? réflexe cochléo-palpébral ?…). Pour ma part, après une consigne assez sommaire type « limite du supportable », je trouve que l’observation du visage est assez précise, et un re-test quelques années après donne souvent des résultats assez proches. Le seuil d’inconfort n’évoluerait donc pas trop avec le temps, ce qui n’est pas le cas du seuil de confort (que je ne mesure pas) mais qui semble évoluer à mesure que les patients nous demandent plus de gain « pour les voix », donc à niveau « moyen ». Ce fameux passage de courbes de transfert « concaves » à « convexes » qui rendait difficile il y a quelques années un renouvellement du Siemens Prisma 4D (courbes de transfert « convexes » à l’époque), et qui fait que les Widex sont très confortables au début (courbes de tranfert très « concaves ») mais un peu « mous » après quelques semaines (il faut redonner du gain à niveau moyen).

Mais le « grand maître » du seuil d’inconfort statistique est toujours sur son trône depuis les années 80 : c’est PASCOE la plupart du temps qui décide du seuil d’inconfort de votre patient. Ses recherches ont donné en 1988 des abaques de corrélation entre seuil d’audition et seuil d’inconfort par mesures de progression de la sensation sonore (tests LGOB). Et depuis, beaucoup de fabricants utilisent ces tables si vous ne rentrez pas de seuil d’inconfort, et même si vous en rentrez un d’ailleurs (pour certains) !!

Des études plus récentes ont affiné ce « seuil d’inconfort statistique » de Pascoe, et je suis surpris du « nuage statistique » dans lequel on fait passer ces droites de régression qui serviront de base à ces inconforts statistiques…

Et ces fameux « nuages statistiques », nous les voyons tous les jours : les patients sans aucun inconfort, ceux aux aigus insupportables, aux graves très gênants (ça arrive), etc… et pour des seuils HL finalement pas si éloignés. Alors au final, c’est vrai, il doit bien exister une « droite » qui passe par le centre de gravité de tous ces cas particuliers. Et ce que cherchent les fabricants qui utilisent ces statistiques n’est peut-être pas dénué de fondement : il vaut mieux une statistique 70% du temps juste plutôt qu’un inconfort 70% du temps mal mesuré (= aide auditive 100% mal réglée pour son porteur !).

Et si même, ne seraient-ce que 90% de nos évaluations du SSI étaient assez bonnes (pas moins bonnes que celles de Mr Pascoe en tout cas), je crois que de toutes façons nous n’avons rien à perdre à « individualiser » l’adaptation.

Vous trouverez en téchargement ici une étude sur l’utilisation des seuils d’inconforts saisis pour différents logiciels de réglages. Plusieurs choses ont été analysées: si un seuil d’inconfort est trouvé par le logiciel, l’utilise t-il pour le calcul des compressions ? juste pour le calcul du MPO/PC/SSPL90 ? pas du tout ? quelques surprises…

Article et étude rédigés conjointement par Thibaut DUVAL (pour l’étude des logiciels et tableau), Sébastien GENY et Xavier DELERCE.

Je découvre un article très intéressant du Dr Christian Meyer-Bisch dans le bulletin d’octobre 2009 de la société française d’audiologie (SFA), sur l’incertitude en audiométrie tonale.

Si l’on a bien conscience  de l’incertitude liée au sujet testé, sa concentration, sa fatigue ou fatigabilité, sa bonne volonté ou sa compréhension des consignes, il existe d’autre facteurs d’incertitude.

L’ISO (International Organization for Standardization)  liste actuellement 8 facteurs d’incertitude :

Le respect des méthodes, le contrôle de la conformité des audiomètres, celui de la conformité des écouteurs/vibrateurs, l’insonorisation, les bonnes pratiques de masquage, l’expérience du testeur, la coopération du sujet, des conditions de mesurage exceptionnellement difficiles. Les trois dernières catégories n’étant pas actuellement estimées par l’ISO.

Au total, l’incertitude audiométrique dans les meilleures conditions de test atteint 5 à10dB en CA et 7 à 15dB en CO… quand même !

Quand on pense que le critère de détermination d’une Zone Cochléaire Morte par le TEN-Test est un décalage du seuil masqué de 10dB au moins (critère de BCJ Moore), juste la marge d’incertitude calculée par l’ISO, on se dit que prudence est mère de sûreté…

XD

Bienvenu

Bienvenu chez Blog-Audioprothesiste.fr !

Qui Sommes nous ?

Contactez nous !

Je contacte Sébastien
Je contacte Xavier
Je contacte Jean Michel