Qui sommes nous ?

Nous sommes un collectif d'audioprothésistes, depuis 2006, qui cherchent à améliorer l'image et la diffusion de connaissances techniques à destination des audioprothésistes ! L'exercice nous permet de commenter et également d'améliorer nos connaissances. Il faut bien le dire ce blog bouillonne de bonnes idées !!!! Si toi aussi tu as envie de partager ton expérience ! Alors rejoins nous !

Sondage : pratique de la mesure in vivo en appareillage auditif

Bonjour à tous,   Je vous fais part de la demande d’une étudiante de Fougères (Capucine MARMORAT), dans le cadre de son mémoire de fin d’année. Ce mémoire porte sur la pratique de la MIV et les freins éventuels (formation, coût, temps, utilité, etc.) à cette pratique. Merci d’y consacrer quelques instants. Vous trouverez dans son message le lien pour répondre au questionnaire :
Cher(e) audioprothésiste,
Dans le cadre de mon mémoire, en vue de l’obtention du diplôme d’Etat d’audioprothésiste, je sollicite quelques minutes de votre temps (5 à 10 maximum) pour répondre à un questionnaire.
Mon mémoire a pour sujet : « La pratique de la Mesure In Vivo ». Je m’interroge sur la place de la MIV, à l’heure actuelle, en France.
Pour cela, j’ai besoin de connaître votre pratique pour faire une étude objective. Elle n’est en aucun cas un jugement de votre façon de travailler.
Bien entendu, toutes les réponses obtenues seront analysées uniquement dans le but de mon mémoire et de manière anonyme. J’insiste sur le fait qu’en aucun cas, votre nom ou vos réponses individuelles n’apparaîtront.
Enfin, si vous êtes intéressé(e) par les résultats de mon étude, je serai heureuse de vous les transmettre.
Pour remplir le questionnaire, il vous suffit de cliquer sur le lien suivant remplissez-le dans Google Forms et de répondre en ligne. Je vous remercie sincèrement pour toute l’attention et le temps que vous pourrez consacrer à ce questionnaire (d’autant plus que le CNA est intéressé par les résultats).
Bien cordialement,
Capucine MARMORAT, Etudiante en 3ème année à l’école de Fougères

3 – Le Saint Graal de l’audioprothèse : mesurer le RSB en sortie d’aide auditive – Test 3… et fin !

Suite du premier et second billet. Troisème test après celui ci et celui ci.

Troisième (et dernier) candidat : WIDEX UNIQUE 440 Fusion

Il s’agit d’un RIC pile 312, successeur du circuit DREAM 440. Le Widex UNIQUE marque une rupture technologique qui semble importante chez ce fabricant puisque l’on a pour la première fois une détection automatique de 9 environnements sonores différents, le choix entre la transposition fréquentielle « classique » ou une duplication (mais ce n’est pas le sujet qui nous intéresse aujourd’hui), 4 convertisseurs A/D  de 18bits, soit pas loin de 108dB de dynamique, un seuil d’enclenchement possible vers 5dB SPL (étonnant), etc… Surtout, et là c’est plus surprenant (pour les audios habitués à la marque) et intéressant, l’amélioration de l’intelligibilité ne repose pas uniquement sur un réglage de « réduction du bruit » à proprement parler, mais plusieurs réglages de détection et et d’amplification de la parole (Speech Enhancer), dont un mystérieux réglage « Audibilité ». Widex explique d’ailleurs que les patients agissant sur le potentiomètre à la hausse, agiront spécifiquement sur ce réglage de renforcement de la parole.

Alors ? Marketing tout ça ou réelle avancée technologique ?

Appareil testé sur un pré-réglage avec méthodologie propriétaire Widex, base audiogramme KS100. Le LTASS de la voix moyenne (65dB SPL) a été mis sur une cible sur DSL 5.0a, base insert et RECD HA1, comme pour les autres appareils testés, afin de tous les comparer dans des conditions de réglages similaires. Pour ce Widex UNIQUE comme pour les autres appareils testés, les rapports de compression sont restés tels que préconisés par leurs fabricants respectifs.

Laisser faire les automatismes ou « fixer » l’appareil dans un mode particulier ?

Connaissant depuis un petit moment déjà l’anti-larsen Widex, on pourra certes lui reprocher plein de choses, mais en aucun cas d’inverser la phase du signal. C’est le genre d’effets collatéraux que l’on découvre en faisant ce genre de tests… Donc, et contrairement aux autres fabricants testés précédemment, j’ai décidé :
  • dans un premier temps, de le tester en désactivant la détection automatique d’environnements, d’activer le micro directionnel fixe avant, mais en activant ce fameux réglage « d’audibilité » au maximum; donc en fixant l’appareil dans une sorte de mode « parole dans le bruit », avec anti-larsen actif
  • puis de le tester dans un second temps « tel quel », sans activer, désactiver ou sur-activer de traitement du signal particulier, ni désactiver la reconnaissance automatique d’environnements. Je ne l’avais pas fait lors des essais précédents, les extractions n’auraient alors pas été possibles à cause de l’anti-larsen par opposition de phase des deux appareils précédents testés (et dans une moindre mesure, de la détection automatique des environnements)
  • enfin, de comparer les deux conditions afin de savoir si ce réglage d’extraction de la parole améliore réellement le RSB

Les résultats « visuels » à RSB -5dB :

U440_AUDIB_SNRm5 Les connaisseurs de Widex reconnaitront le fonctionnement typique de la marque : la réduction du bruit et/ou l’activation du mode directionnel est très progressif, mais nettement plus rapide que sur les modèles précédents où il fallait 10 à 15 secondes à l’appareil pour activer ses divers systèmes. Sur cet UNIQUE440, c’est beaucoup plus rapide : environ 7 secondes. Les crêtes semblent bien préservées tout au long de la mesure, n’oublions pas que nous sommes à un RSB de -5dB en entrée.

On écoute ?

 Voici d’abord ce que le micro de référence capte en cabine à RSB -5dB :

REF_CABINE_SNRm5Et ce que ça donne à l’écoute en cabine, sans appareil (il y a de l’ambiance !) :

 Et voici avec l’appareil, toujours à RSB -5dB en entrée, réglage d’audibilité au maximum (c’est l’écoute du visuel avec les zones temporelles entourées) :

On sent très nettement, entre la 12ème et la 15ème seconde, la réduction du bruit. La parole devient alors de plus en plus audible. Est-il plus probable que ce que l’on entende soit dû à l’enclenchement du microphone directionnel et/ou à l’activation d’un réducteur de bruit ? Nous verrons cela plus en détail par la suite… Suspenssssssss inssssssoutenable !!

 Des chiffres (réglage « Audibilité » maximum + micro. dir. fixe avant) :

Juste à noter, un détail : les extractions des signaux issus du Widex UNIQUE 440 ne peuvent se faire qu’avec un alignement par l’enveloppe des signaux SpN, SmN, mSmN et mSpN. Impossible d’avoir des extractions correctes en alignant par la structure fine… à l’inverse des deux autres fabricants testés ! Mystère… U440_audMax_micDir On trouve sur ce graphique :
  • ce que capte en parallèle le micro de référence (lignes 10 à 14)
  • les Leq en dBA(30s) respectifs du signal et du bruit (colonnes D et E)
  • lignes 3 à 7 : les extractions avec le UNIQUE 440
  • colonne C3<–>C7 le RSB réel en entrée (issu du micro de réf.)
  • colonne I3<–>I7 le RSB en sortie de l’appareil
  • colonne J17<–>J21 la différence entre le RSB à la sortie de l’appareil et le RSB réel en cabine (mic. de réf.)
La parole est très stable (delta de 3,5dB de RSB +10 à RSB -10), l’appareil « n’emporte pas » le signal avec le réducteur de bruit (ça arrive des fois…). Le bruit varie de 20 dB en entrée pour 17dB en sortie. L’amélioration du RSB par l’appareil est d’environ 8dB dans ce mode (colonne I – colonne C) de +10 à à 0dB en entrée. Les deltas sont en J17<–>J21. On est donc face à un appareil très performant dans le bruit, présentant un très efficace mode directionnel, mais couplé à un système qui semblerait préserver (donc différentier ?) le signal utile. Comment mettre en évidence ce système ? S’agit-il plutôt d’un réducteur de bruit ou d’un détecteur/expanseur de parole ?

« Audibilité renforcée » : réglage utile ou gadget ?

Vous vous demandez certainement (comme moi…) si le fait de déplacer un curseur de deux crans va réellement agir sur l’audibilité de la parole. Et quelle est l’action de ce réglage ? Une réduction du bruit dans les silences de la parole permettant une émergence du signal utile (comme le Bernafon) ? Ou au contraire une détection des indices vocaux et une amplification renforcée sélective ? Une seconde série de mesure à été refaite :
  1. comme la précédente, audibilité max et mic. directionnel avant fixe
  2. réglage « standard » en mode automatique total
AN : le réglages sont très reproductibles, puisque les deux mesures faites en « audibilité max. + mic. dir. » sont quasi-identiques sur les deux mesures.

Réponse avec l’analyse LeqA des divers signaux extraits sur les 30 dernières secondes (de 40″ à 1’10 ») du mix signal + bruit (donc après l’activation du microphone directionnel qui a dû se produire dans les 7 premières secondes) : U440_STDvsAUDIB Les réglages des gains sont les mêmes dans les deux conditions :
  • Il n’y a quasiment pas de différence entre les niveaux du bruit (lignes E3/E7 et E11/E15) avec le réglage d’audibilité « moyenne » ou « maximum » : le LeqA(30s) évolue dans les deux conditions de 63 à 80dB environ de +9 à -11dB de RSB(in). Le réglage d’audibilité n’est donc pas principalement un réducteur de bruit.
  • Par contre, on constate un net renforcement du signal de parole entre les deux conditions : +3 à +5dB en « audibilité maximum » par rapport au réglage « standard » (lignes D3/D7 par comparaison à D11/D15).
C’est donc l’action de ce réglage qui explique l’amélioration du RSB entre les deux conditions. Il ne s’agit donc pas d’un réducteur de bruit, mais bien d’une détection spécifique et d’un renforcement du signal de parole.

Voici la progression du UNIQUE 440 :

U440_auto_audib L’amélioration du RSB est de 4dB environ en « mode auto » (courbe orange), ce que bien des fabricants aimeraient atteindre en mode directionnel fixe et RB au maximum… On notera juste que l’appareil, dans les deux modes de réglages va privilégier le confort plus que l’efficacité sous RSB 0dB.

Par contre en mode d’audibilité renforcée (courbe rouge), l’appareil regagne encore 4dB de RSB, ce qui donne au total une amélioration du RSB de 8dB entre 0 et +10dB et 6 à 7dB environ entre -10 et 0dB. Impressionnant tout de même, c’est le maximum mesuré jusque là entre les divers fabricants en monaural…

Au-delà de la performance pure, certains appareils performants atteignent quasiment ce niveau, mais avec une qualité sonore du signal utile très « artificielle » (je présume, hachée par les compressions). Ici, et c’est souvent le cas chez Widex, la qualité du son reste très bonne. Les extractions (en sortie de l’appareil) donnent un signal de parole clair, comme ici extraite des 30 dernières secondes d’un mix RSB -5dB : Ca fonctionne quand même bien la méthode de séparation des signaux par opposition de phase… Merci Messieurs Hagerman & Olofsson ! Il faudra un jour que je vous fasse écouter les extractions de parole de 7 fabricants testés, en blind test : nous aurons des surprises dans la qualité sonore… C’est un aspect des choses ignoré, mais qui doit avoir aussi son importance…

Emergence du message

Widex dit utiliser un SII « HD » dans son algorithme. Je ne connais pas de norme SII « HD »… mais la bonne vieille (et toujours en vigueur) norme ANSI S3.5-1997 qui définit le calcul du SII, auquel, c’est vrai, on peut ajouter un calcul (non encore normé) du SII bilatéral. Bref… améliore t-il le SII ? On peut présumer que oui puisque la parole est détectée et amplifiée sélectivement.

Voici ce qui se passerait si l’appareil n’améliorait pas le RSB (situation encore fréquente ces dernières années…) : U440_SNR0in_SNR0out RSBin_equal_RSBout_corr_KS100Le SII avec l’appareil serait d’environ 0,38 à RSB 0dB.

Et avec l’appareil, dont l’amélioration RSB est d’environ 7,2dB à RSB 0dB en entrée : U440_SNR0in_SNR7out U440_SIILe SII passe à 0.61 (SII calculé sur base audiogramme KS100, signal à l’avant et bruit arrière, par le logiciel SIP-Toolbox). On obtient une émergence améliorée de 23% du signal par rapport au bruit. Pour vous donner une idée : un SII de 0,33 est suffisant à un normo-entendant pour répéter 50% des mots de listes dysyllabiques, et 0,4 pour répéter 90% des phrases d’un test (selon la norme SII). Vous noterez au passage qu’il serait impossible d’obtenir un SII supérieur à 0,8…

Conclusion(s)

  • Le réglage « Audibilité » de ce Widex UNIQUE 440 fonctionne bien comme un détecteur et « expanseur » de parole
  • absence de potentiomètre standard, remplacé par ce réglage croissant de détection de la parole améliore progressivement de RSB; vous êtes gêné pour comprendre dans le bruit = appuyez sur la touche + !!!
  • les meilleurs résultats dans le bruit (+8dB de RSB) sont obtenus avec un programme spécifique, en désactivant le détecteur d’environnements, en mode directionnel fixe et audibilité au maximum, comme sur les modèles testés précédemment. La directionnalité fixe potentialise toujours nettement l’action des algorithmes.

Fichiers et extractions

Pour les incrédules de la méthode (ou des résultats obtenus), ce que je peux comprendre, vous trouverez à l’adresse de ce lien tous les fichiers de calibration des micros de référence (Behringer) et de mesure (DPA) ainsi que les enregistrements avec ce UNIQUE 440 FS, découpages des séquences et extraits correspondants de parole et bruit à chaque RSB. Condition de test : Audibilité max. et mic. dir. fixe avant.

Formule d’usage : l’auteur signale un lien d’intérêt avec le fabricant testé, puisqu’il a accepté de me prêter cet appareil avant sa commercialisation officielle, mais pas dans le but de ces tests. Le « risque » est relativement important pour Widex qui a décidé de prêter quelques appareils à des fins comparatives à des patients déjà équipés de technologies évoluées. Si les résultats n’avaient pas été à la hauteur, je n’en aurait peut-être pas parlé, et chacun se serait fait son idée. Ce n’est pas (à mon humble avis), le cas. Comme d’habitude, n’y voyez aucune malice (et d’ailleurs, j’arrête la diffusion publique de ces tests, en attendant que les facs, en études multi-centriques, prennent le relai avec du matériel professionnel en cours d’installation), ne déduisez rien d’absolu au vu des seuls résultats. L’appareillage auditif est une alchimie entre l’audioprothésiste, son patient et la technologie la plus appropriée qu’ils choisissent en commun.

Ce troisième test conclura donc les billets sur l’analyse du RSB en sortie d’aide auditive par la méthode de séparation des signaux de Hagerman & Olofsson. Elle est cependant incomplète, car potentiellement améliorable par une même mesure, mais en binaural. Il est intéressant (j’espère) et rassurant de voir que la technologie a énormément évolué ces dernières années. Ce que nous ressentons vaguement dans les dires de nos patients est une réalité tangible et mesurable avec quelques appareils récents.

J’ai entendu parler (mais je ne lis pas ce genre d’articles) qu’un journal de consommateurs assimilait les appareils auditifs à des biens électroniques de grande consommation, et dont le prix ne pouvait que baisser dans le temps, comme tout bien électronique qui se respecte… C’est bien vite oublier que toutes ces améliorations sont le fruit d’algorithmes de plus en plus sophistiqués associés à l’évolution de composants ultra-spécifiques à l’appareillage auditif. Ces derniers ne sont qu’au service des premiers. Car, quelle est la différence entre l’appareil d’il y a 5 ans, et par exemple ce Widex UNIQUE 440 ? Pas le micro directionnel… Cette recherche, je veux bien le croire, nécessite des moyens colossaux en temps, en cerveaux et technologie.

Les appareils de 2015 n’ont finalement plus grand chose en commun avec ceux de 2005, mais présentent des spécificités importantes de comportement inter-marques.

Entre celui qui privilégie le confort avec une diminution de sonie importante, mais en conservant toujours un RSB amélioré, celui qui mise sur un « nettoyage » du bruit dans les silences de la parole, celui qui va chercher à améliorer la perception des crêtes afin d’améliorer le RSB, et que sais-je encore, les différences de fonctionnement sont très variées et très différentes selon les fabricants.

Pouvons-nous penser un seul instant que tous pourraient s’adapter indifféremment à n’importe quel patient ? Certainement pas…

Malheureusement, la seule lecture des fiches techniques ne nous renseignera pas sur leurs manières d’agir. Et certaines fois, la présentation de ces technologies se résume à une soirée promotionnelle…

A nous d’être curieux 😉

« Send out the Signals… Deep and Loud ! »*

Et pour finir cette série de 5 billets sur une note légère, un peu de musique avec un très beau morceau de Peter Gabriel (* paroles de la chanson) qui colle bien au sujet : Signal to Noise ! Où même le bruit peut devenir signal, si on le décide…     Encore merci à Franck et François-Xavier !

Ceci est un carré !

Square_true

Définition de la mesure in-vivo : moyen technique confirmant que ce que nous pensons être en train de faire est réellement ce que nous sommes en train de faire.

J’ai trouvé dans un résumé de conférence cette définition simple, humoristique et très juste. Cette conférence aborde le sujet intéressant de la dynamique de la parole, son analyse percentile par les chaînes de mesure et les effets collatéraux sur cette dynamique des temps d’attaque et de retour, TK et compressions…

Mais plus intéressant encore, la présentation rebondit sur un article de Hearing Revue paru cette année, issu d’un travail de mémoire en cours. En 2015, nous pouvons avoir cette fausse sensation de sécurité que les appareils actuels sont tellement bons (et je vais dans ce sens : certains sont vraiment très bons dans le bruit) que ce que vous voyez dans le logiciel (niveau de sortie et compressions) est ce que vous pensez obtenir réellement dans l’oreille.

Grave excès de confiance ! Et bien non, c’est un vieux serpent de mer, même en 2015 : à 10, voire 15dB près, vous ne savez toujours pas ce qui se passe dans le conduit auditif du patient !!! Pire encore : les compressions affichées ne sont pas celles réellement obtenues, avec une erreur moyenne de 10dB (en trop !) pour des niveaux d’entrée de 75dB SPL. Vous comprendrez aisément que lorsque les fabricants s’échinent à mettre au point des algorithmes capables d’améliorer de 8dB le RSB, il est dommage de ne pas savoir à 10 ou 15dB près ce que nous mettons dans le conduit, au risque de perdre tout ce que peut apporter la technologie…

Comment ont procédé les audiologistes : ils ont pré-réglé 5 appareils en méthodologie NAL-NL2, puis ont tout simplement effectué une mesure in-vivo avec une cible NAL-NL2 à 55, 65 et 75dB SPL en entrée. Et enfin, calculé la différence entre la cible NAL-NL2 et le LTASS réel du signal de mesure amplifié (REAR). Bien entendu, ces différences ne sont pas liées à NAL-NL2; elles auraient été identiques avec DSL 5.0.

En 2015, cessons de prendre des ronds pour des carrés (et vice versa) ! 😉

Et vous voulez que je le mette OU mon haut-parleur ???

La question n’est pas nouvelle pour les audioprothésistes pratiquant la mesure in-vivo : quel est l’impact du positionnement du HP sur la précision de mesure ? Elle a pris de l’importance plus encore ces dernières années avec les mesures in-vivo de signaux de parole, la MIV d’appareillages open, et le choix qui s’offre à nous entre deux méthodes de pré-calibration, MPCE et MPSE , « Normal » ou « Open-REM ». La pré-calibration (et les deux méthodes dont j’avais parlé dans ce post), consiste, en gros, à mesurer la distance entre le micro de référence du casque de MIV et le HP, afin d’en déduire l’affaiblissement qui en découle à chaque fréquence et de compenser d’éventuelles résonances. Dans une cabine « idéale » (chambre anéchoïque), le spectre du signal de test sortant du HP n’aurait pas besoin d’être retouché. Les caractéristiques acoustiques du local de test sont donc mesurées lors de la pré-calibration; la distance et l’emplacement du HP d’émission dans ce local ont donc leur importance. On peut imaginer qu’un HP placé « en vrac » dans un local de mesure plus ou moins réverbérant produira au final un signal de test très déformé, car ce bruit de « chirp » émis avant chaque mesure voyage dans le local, et va être récupéré par le micro de référence avec les résonances présentes. La chaîne de mesure essaiera ensuite, lors de l’émission du signal de test, de soustraire ces résonances mathématiquement, par équalisation. Cette opération ne sera pas sans conséquence sur la qualité du signal de test (l’ISTS par exemple), qui souffrira d’une sonorité peu naturelle à l’écoute.
Voici, par exemple, l’effet de la distance entre le HP et le micro de référence sur le signal de pré-calibration :
Effet_distance_precalibr C’est clair : plus le HP d’émission est proche du micro de référence, plus vous privilégiez le champ direct, comme ici à 50cm. A 1m50, le champ réverbéré devient prédominant et vous intégrez au signal des pics de résonance (flèches) liés à l’acoustique de la cabine. Un signal de test issu d’une mauvaise pré-calibration sera de mauvaise qualité acoustique, car il aura été très « maquillé » en fréquence et en intensité par la chaîne. Et même une cabine avec une très bonne correction acoustique échappera difficilement à ce problème de distance entre le HP et le micro de référence.
Mais alors, où placer le HP de mesures in-vivo ?
Questions subsidiaires : qu’est-ce que je risque ? un HP de mon champ libre ne fera t-il pas l’affaire ? Pour tenter de répondre à cette question, j’ai « déterré » un article du temps où il n’y avait pas de signal vocal de test, et donc, pas de « pré-calibration » (mais juste une calibration de la sonde), pas de « MPSE » ou de « MPCE », d' »OCAM » (oups, je m’égare !)… bref, un article de Killion et Revit de 1987 ! Et même s’il est tiré de Ear&Hearing, son auteur en permet son téléchargement légal; donc non, Sébastien : tu n’iras pas encore en prison cette fois ci parce que j’ai mis un article avec copyright sur le blog 😉
Voici donc quelques conseils permettant de placer correctement son HP de test lorsque l’on veut faire de la MIV :
  1. Ca n’est pas l’objet de l’article de Killion et Revit, mais pour les raisons liées à la pré-calibration évoquées plus haut, plus vous éloignez le HP du micro de référence, plus le micro de référence est influencé par les caractéristiques acoustiques de la cabine. Donc, restez en champ le plus direct possible pour tester avec ISTS. Distance maximum HP-patient = 50cm.
  2. L’angle recommandé dans le plan transversal (droite-façe-gauche du patient) est à 45°. Il faudrait donc avoir un HP mobile sur le plan de travail, et le déplacer pour les MIV de droite, puis gauche. On notera que ce point est totalement ignoré par les très vendeuses (mais très pratiques…) mesures in-vivo bilatérales simultanées ! La sensibilité aux mouvements de la tête est d’environ 2dB, au maximum dans les HF. C’est peu, et donc on pourrait, à peu de risques, continuer à 0° (face patient)… et donc en binaural pour les adeptes !
  3. L’angle recommandé dans le plan sagittal (de face à en haut, de face au front à au-dessus de la tête) a beaucoup plus d’incidence sur la qualité de la mesure, dans certaines configurations. Un HP posé sur la table face au conduit auditif du patient  a un angle de 0° dans le plan sagittal. Selon Killion et Revit, cet angle sagittal entraîne une erreur de mesure potentiellement très importante (« explosive » !) dans les HF, de 4 à 6kHz. En cause : l’anti-résonance de la conque à ces fréquences, certes peu corrigées la plupart du temps. Idéalement, l’angle du HP devrait être de 45° dans ce plan, ce qui implique un HP sur pied ou fixé légèrement au-dessus du regard. On gardera donc à l’esprit l’erreur de mesure potentielle dans les HF>3kHz lors d’appareillages ouverts si le HP est à 0° dans ce plan.
  4. Enfin, s’il fallait éviter à tout prix une configuration, ce serait celle d’un haut parleur de champ libre, fixé au plafond ou en haut d’un mur face au patient (90°/0°). L’erreur de mesure de gain d’insertion relevée par les auteurs à l’époque allait jusqu’à 15dB dans les HF…
  5. … et s’il fallait en conseiller une, ce serait 45°/45°, légèrement de côté et en haut. Difficilement possible sans un bras articulé (accessoire FONIX).
Tout ceci semble logique finalement (distance, plans) mais pas forcément facile à mettre en oeuvre… La connaissance de ces contraintes permet cependant d’attribuer les difficultés de test/re-test à notre configuration matérielle plus qu’à de supposés comportements mystérieux des aides auditives; elles sont certes très complexes aujourd’hui, mais pas totalement construites sur de la logique floue ! Finalement, même si la configuration idéale est atteinte, on notera une précision maximale de la mesure in-vivo de l’ordre de 2 à 3dB, gardons-le à l’esprit…       J’en profite pour donner la clé du grenier de Killion, aux plus curieux d’entre-vous : vous y trouverez plein d’articles en téléchargement, de la « préhistoire » jusqu’à nos jours, dont celui cité ici, et dont est tiré le titre de ce post. Une bonne vision de l’évolution de l’audiologie prothétique sur les 30 dernières année. Et pour le(s) fan(s) français du CORFIG (il sait que je le taquine, là 😉 ) : quelques merveilleux articles sur le sujet ! Si vous avez du temps… ou un peu moins… Bonnes lectures !