Catégorie : Le niveau de sortie Max.

C’est l’histoire d’un « serpent de mer » de l’audioprothèse : les fabricants utilisent-ils les seuils subjectifs d’inconfort que nous prenons la peine de mesurer ?

Et je pense que beaucoup de monde a fait la même chose : saisir un audiogramme tonal à 60dB HL plat à droite, sans inconfort, et le même à gauche avec un SSI (Seuil Subjectif d’Inconfort) à 90dB HL sur toutes les fréquences. On rentre dans un logiciel d’adaptation, on choisi le même appareil des deux côtés, et on regarde ce qui se passe avec la formule par défaut du fabricant…

Et là, trois possibilités :

  • Aucune différence de réglages entre les deux oreilles (assez courant)
  • Aucune différence dans le réglage des compressions MAIS le niveau de sortie maximum, si le réglage existe, est corrélé au SSI (a tendance à se développer)
  • L’oreille présentant la dynamique réduite a des réglages adaptés en compression et niveau maximum de sortie (assez rare par défaut)

Donc on peut en déduire que majoritairement, les fabricants n’utilisent pas les seuils d’inconfort mesurés par les audioprothésistes, en tout cas pour leur calcul des compressions et autres points d’enclenchements.

Ce n’est pas tout à fait surprenant car la formule de calcul utilisée est souvent NAL-NL1 ou une adaptation « maison » de NAL-NL1. Or la formule australienne utilise un seuil d’inconfort statistique. Un peu vexant pour les audios qui pratiquent la mesure du SSI !

L’apparition de systèmes de gestion des bruits impulsionnels en entrée a modifié un peu cette approche puisque certains fabricants proposant ces systèmes proposent des « mix » entre un calcul des compressions basé sur la dynamique statistique et un MPO ou « pseudo-écrêtage » basé sur le SSI. C’est mieux, mais on ne nous laisse pas encore toutes les clés de la maison…

Par contre, il est toujours possible d’utiliser des formules de calcul intégrant le SSI mesuré dans le calcul des compression et MPO, c’est le cas de DSL I/O par exemple, souvent proposée par défaut lors des appareillages pédiatriques, bien qu’il ne soit pas évident d’obtenir un SSI avant 10ans.

Il faut reconnaître aussi que la mesure d’un seuil d’inconfort est très subjective (c’est le cas de le dire) : elle dépend presque autant du patient, de sa peur ou au contraire de sa bravoure (!), que du testeur et de sa limite posée (douleur ? limite du supportable ? réflexe cochléo-palpébral ?…). Pour ma part, après une consigne assez sommaire type « limite du supportable », je trouve que l’observation du visage est assez précise, et un re-test quelques années après donne souvent des résultats assez proches. Le seuil d’inconfort n’évoluerait donc pas trop avec le temps, ce qui n’est pas le cas du seuil de confort (que je ne mesure pas) mais qui semble évoluer à mesure que les patients nous demandent plus de gain « pour les voix », donc à niveau « moyen ». Ce fameux passage de courbes de transfert « concaves » à « convexes » qui rendait difficile il y a quelques années un renouvellement du Siemens Prisma 4D (courbes de transfert « convexes » à l’époque), et qui fait que les Widex sont très confortables au début (courbes de tranfert très « concaves ») mais un peu « mous » après quelques semaines (il faut redonner du gain à niveau moyen).

Mais le « grand maître » du seuil d’inconfort statistique est toujours sur son trône depuis les années 80 : c’est PASCOE la plupart du temps qui décide du seuil d’inconfort de votre patient. Ses recherches ont donné en 1988 des abaques de corrélation entre seuil d’audition et seuil d’inconfort par mesures de progression de la sensation sonore (tests LGOB). Et depuis, beaucoup de fabricants utilisent ces tables si vous ne rentrez pas de seuil d’inconfort, et même si vous en rentrez un d’ailleurs (pour certains) !!

Des études plus récentes ont affiné ce « seuil d’inconfort statistique » de Pascoe, et je suis surpris du « nuage statistique » dans lequel on fait passer ces droites de régression qui serviront de base à ces inconforts statistiques…

Et ces fameux « nuages statistiques », nous les voyons tous les jours : les patients sans aucun inconfort, ceux aux aigus insupportables, aux graves très gênants (ça arrive), etc… et pour des seuils HL finalement pas si éloignés. Alors au final, c’est vrai, il doit bien exister une « droite » qui passe par le centre de gravité de tous ces cas particuliers. Et ce que cherchent les fabricants qui utilisent ces statistiques n’est peut-être pas dénué de fondement : il vaut mieux une statistique 70% du temps juste plutôt qu’un inconfort 70% du temps mal mesuré (= aide auditive 100% mal réglée pour son porteur !).

Et si même, ne seraient-ce que 90% de nos évaluations du SSI étaient assez bonnes (pas moins bonnes que celles de Mr Pascoe en tout cas), je crois que de toutes façons nous n’avons rien à perdre à « individualiser » l’adaptation.

Vous trouverez en téchargement ici une étude sur l’utilisation des seuils d’inconforts saisis pour différents logiciels de réglages. Plusieurs choses ont été analysées: si un seuil d’inconfort est trouvé par le logiciel, l’utilise t-il pour le calcul des compressions ? juste pour le calcul du MPO/PC/SSPL90 ? pas du tout ? quelques surprises…

Article et étude rédigés conjointement par Thibaut DUVAL (pour l’étude des logiciels et tableau), Sébastien GENY et Xavier DELERCE.

Pour faire suite au billet de Sébastien concernant le PC, je voulais apporter mon point de vue et faire un petit récapitulatif de ces petites merveilles de traitement du signal que l’on voit fleurir depuis quelques années dans les aides auditives sous les noms de SoundSmooth (Siemens), AntiShock (Unitron), SoundRelax (Phonak) Compression tZéro (Widex), etc… Derrière ces noms très étudiés par les bureaux de marketing se cachent vraiment des systèmes qui améliorent la vie des malentendants appareillés.

Avant (toujours cette fameuse préhistoire d’il y a une 10aine d’années !), lorsque les aides auditives étaient analogiques, les choses étaient simples : soit les aides auditives étaient pourvues d’un réglage spécifique de l’écrêtage et l’audio déterminait son « MPO », soit ce réglage n’était pas disponible et le système atteignait sa propre limite, dictée par le circuit ou l’écouteur. Par contre, cet écrêtage avait le mérite d’être quasi-instantané, et tellement efficace… qu’il en créait des distorsions.

Donc, sur les dernières années de l’analogique (et les premières du numérique) sont apparues les compressions en sortie de facteur élevé (AGCo de facteur 10, par exemple) qui avaient le mérite de ne pas créer de distorsions, comme tout AGC qui se respecte, mais qui a vu les plaintes de gêne aux bruits impulsionnels (couverts, assiettes, interrupteurs, etc…) augmenter.

Pourquoi ? Car tout système de compression fonctionne avec un temps d’attaque (et de retour), et même si les niveaux forts étaient maîtrisés, le temps que le système se mette en marche, le bruit avait déjà généré une gêne :

Temps d'attaque d'un AGCo et d'un système d'écrêtage en entrée
Comparaison des TA d'un système AGCo et d'un système à détection de bruits impulsionnels en entrée (Widex MIND)

La courbe verte en gras d’une aide auditive avec limitation par AGCo (une aide auditive récente), génère un artefact de plus de 10dB (le « pic » à plus de 115dB SPL) avant que la compression d’attaque ne régule le signal : il peut y avoir gêne chez certains patients.

Est-il possible d’installer un « vrai » écrêtage sur les aides auditives numériques ? Non, au sens montage électronique du terme, mais également à cause du temps de traitement du signal du processeur, qui varie de 1 à plus de 5ms, et induit donc un décalage temporel entre le bruit impulsionnel et son traitement par l’appareil. Et s’il y a délai de traitement, on ne peut pas parler strictement d’écrêtage.

Mais les fabricants ont trouvé la parade, en traitant les sons impulsionnels AVANT leur entrée dans le processeur. Il me semble que le premier à avoir abordé le problème sur les AA numériques est Philips avec sa gamme D61 et dérivés il y a une dizaine d’années. Il y avait bien des réglages appelés PC chez les différents fabricants mais il aura fallu attendre ces dernières années pour que le problème soit en passe d’être réglé avec la démocratisation de ces systèmes de détection des bruits impulsionnels.

La mesure faite avec une ce ces aides auditives de dernière génération, un Widex MIND avec système « tZéro » (courbe fine du graphique du dessus,) montre que le passage de 40 à 100dB SPL ne génère pas d’artefact dû au temps d’attaque (le système est instantané) : pas de gêne, on retrouve un fonctionnement de type Peak Clipping, les distorsions en moins.

Le schéma simplifié de ce traitement donne :

Schéma de la compression tZéro de Widex
Schéma du principe de fonctionnement de la compression tZéro du Widex MIND

L’avantage d’un tel système, on le comprend facilement, est de ne même pas faire rentrer les sons impulsionnels dans le circuit de traitement du signal. L’inconvénient induit serait de faire n’importe quoi si le système n’était pas « bridé » par les fabricants.

En conclusion, les notions d’écrêtage ou de PC (Peak Clipping), bien qu’historiquement ancrées dans nos têtes d’audioprothésistes, ne sont plus adaptées au traitement numérique du signal, pour des raisons pratiques (montage électronique) ou temporelles (temps de traitement du signal par le processeur). L’écrêtage tel que nous l’avons appris est bien mort: vive la « détection des bruits impulsionnels en entrée » ! Ca fait plus classe… et des patients contents !

XD. Merci à Alexandre GAULT pour son infographie du schéma tZéro de Mind.

PHONAK a lancé il y a quelques années un algoritme dédié aux surdités sévères à profondes : le bass boost. En complément du système de supercompression, il vient s’enclencher pour améliorer l’audibilité en milieu bruyant.

Une étude au sujet du bass boost mt en évidence une amélioration du seuil de compréhension en milieu bruyant pour les porteurs d’aides auditives dites POWER. En augmentant le niveau de sortie (+6 dB) des fréquences basses (<1KHz), le benchmark mené par PHONAK met en évidence une amélioration significative de la compréhension en milieu bruyant.

Fonctionnement du bassboost

Cette effet est permis par une augmentation de la sensation sonore dans les basses fréquences (ce qui correspond à la perception des premiers formants des voyelles).

A noter que Bassboost était une option qui existait sur les anciennes gammes d’appareils PHONAK. Couplé au Savia Art, on obtient un algoritme qui s’enclenche précisément dans les séquences bruyantes de la vie quotidienne des malentendants.

PHONAK explique, que cette option réservée aux patients les plus malentendants, est essentiel à plusieurs titres :

  • Les patients atteints de surdités sévères et plus ont une réserve cochléaire de pauvre qualité dans les hautes fréquences bien souvent. Bassboost ne fonctionnant que sur les fréquences les plus basses est un outil adapté.
  • Les patients atteints de perte auditive sévère compense la maigre qualité de leurs hautes fréquences par une amélioration significative de leur discrimination fréquentielle sur les basses fréquences. Une fois encore Bassboost en s’intéressant aux fréquences les plus basses est un outil idéal pour réhausser les fréquences des premiers formants vocaliques (turner et Cummings, 1999).

Comparaison entre plusieurs algorithmes et leur résultat en terme de SNR

Les chiffres sont probants. L’algoritme BASSBOOST améliore le SNR d’environ 1 dB SPL. Le SRT également tant en contours qu’en intras. Ce que je trouve rigolo qui est curieux, c’est que cette option soit débrayable sous iPFG, au regard de la qualité d’écoute obtenue.

A mon avis c’est une option à enclencher systématiquement en cas de surdités au moins sévères avec une dégradation des hautes fréquences.

En tout cas, ce système doit permettre aux porteurs d’anciens appareils auditifs de renouveler pour une vrai innovation en matière de compréhension dans le bruit.

Bienvenu

Bienvenu chez Blog-Audioprothesiste.fr !

Qui Sommes nous ?

Contactez nous !

Je contacte Sébastien
Je contacte Xavier
Je contacte Jean Michel