Qui sommes nous ?

Nous sommes un collectif d'audioprothésistes, depuis 2006, qui cherchent à améliorer l'image et la diffusion de connaissances techniques à destination des audioprothésistes ! L'exercice nous permet de commenter et également d'améliorer nos connaissances. Il faut bien le dire ce blog bouillonne de bonnes idées !!!! Si toi aussi tu as envie de partager ton expérience ! Alors rejoins nous !

Chauchettes d’archiducheche chèches et autres bidouillages : les décalages fréquentiels sont-ils utiles aux frenchies ?

J’avais déjà abordé ce sujet dans un ancien billet. L’éventualité d’avoir à apporter la preuve de l’efficience d’un appareillage auditif n’est pas exclue dans le futur; de même que la justification du choix d’un modèle face à un financeur (les temps sont durs…). Il faudra donc peut être un jour démontrer l’efficacité des divers systèmes de décalages fréquentiels et d’argumenter nos choix prothétiques. Mais sans y être contraints par qui que ce soit, nous pouvons (simple curiosité) avoir envie de constater l’efficacité de ces systèmes, ou de les démontrer à nos patients.
DSLi/o (laboratoire d’audiologie de l’UWO pour University of Western Ontario), a créé récemment dans ce but des fichiers sons permettant de mesurer l’efficacité des différents systèmes de décalages fréquentiels (transposition, duplication, compression fréquentielle).
Il s’agit de signaux sonores reproduisant le phonème /s/ et /sh/(anglais) ou /ch/(français) noté /∫/ en alphabet phonétique international. Le /∫/ présente un pôle de bruit constant dans la zone 2000-8000Hz; le /s/ présente un pôle de bruit constant dans la zone 4500-10000Hz.
Ces signaux ont été créés à partir de l’ISTS, par extraction des zones fréquentielles respectives du /s/ et du /∫/ dans le signal d’origine, puis filtrage d’un bruit blanc par un filtre issu de ces zones fréquentielle : ISTS_SH_S Si vous regardez les spectres de ces fichiers, vous constaterez que ces phonèmes ont un facteur de crête très faible (normal pour ces phonèmes), et qu’en conséquence leur niveau moyen dans les aigus coïncide avec le percentile 99 de l’ISTS dans les zones fréquentielles concernées. C’est un bruit constant, avec les précautions d’usage qui s’imposent avec ce genre de signal.
Hélas, les fichiers .wav mis à disposition par DSL sur leur site (voir lien en début de ce billet), ne sont pas utilisables par les chaînes de mesure distribuées en France, pour des raisons de fréquence d’échantillonnage : ils ont été créés pour la Verifit 2 d’Audioscan.
Mais la maison GENY-DELERCE-MICHEL, qui ne recule devant aucun sacrifice, a créé une StartUp domiciliée au Panama, et alimentée à hauteur de 153,4 millions de dollars par un fonds de pension de retraités de Floride. Et donc :
  • vous les offre en cadeau Bonux et téléchargement dans une fréquence d’échantillonnage adaptée aux chaînes de mesure les plus distribuées chez nous !! Ce sont les deux fichiers NBN S.wav et NBN SH.wav
  • en deuxième cadeau Bonux, avec les 47 millions de $ qui nous restaient, et avant que le fisc nous tombe dessus, vous a créé à partir du spectre des deux fichiers précédents, deux ISTS filtrés : ISTS_SH.wav et ISTS_S.wav. Pour cela, NBN S et NBN SH ont été analysés, et un filtre a été créé correspondant à leurs spectres. Puis ces filtres ont été appliqués à l’ISTS pour créer deux fichiers distincts. Why ? (comme on dirait dans la langue du secoueur d’épieu…..) Parce qu’il est probable que certaines aides auditives prennent les deux premiers signaux comme du bruit. Je vous laisse apprécier le risque, j’attends vos retours, mais vous aurez mon avis sur la question en lisant un peu plus loin… Voici l’analyse spectrale et percentile (puisqu’ils ont une dynamique) de ces signaux maison:
ISTS_filt_SH-S
Vous l’avez compris : dans les deux cas (ISTS filtré ou « bruit phonémique »), on va utiliser le principe de la « zone fréquentielle tronquée » qui va servir de zone « réceptacle » afin de visualiser l’énergie transposée/compressée/dupliquée. Il est donc facile, en deux mesures « décalage pas activé »/ »activé », de vérifier et régler l’effet d’un décalage fréquentiel.

Niveaux d’émission du /∫/ et du /s/ :

En analysant l’ISTS, on peut extraire le /∫/ et le /s/ à respectivement 8,74  et 12,65 secondes du début du signal. On obtient ces niveaux : CH12_65_S8_74_ISTS
  • Pour le  /∫/ :
  • Pour le /s/ (plusieurs segments mis bout à bout = cigale, peuchère !) :
Le niveau est légèrement plus important pour le /∫/ que le /s/, mais la Sonie est nettement plus importante pour le /∫/, de bande passante plus large.

Précautions d’emploi :

  • Pour arriver au « niveau équivalent de crête » des spectres des fichiers NBN S.wav et NBN SH.wav par rapport à l’ISTS, il ne faudra pas émettre en MIV ces signaux à 65dB SPL, mais :
    • pour le /∫/, 65dB SPL – 6dB = 59dB SPL
    • pour le /s/, 65dB SPL – 10dB = 55dB SPL
  • Pour les fichiers ISTS_S.wav et ISTS_SH.wav, le niveau d’émission « équivalent voix moyenne » sera :
    • pour le /∫/, 65dB SPL – 15dB = 50dB SPL
    • pour le /s/, 65dB SPL – 15dB = 50dB SPL
Vous pouvez enregistrer NBN S.wav, NBN SH.wav, ISTS_S.wav et ISTS_SH.wav dans vos dossiers de fichiers sons REM ad hoc selon votre configuration matérielle, télécharger les tests suivants prédéfinis pour Affinity ou FreeFit, et techter tout cha ! Attention, tests basés sur une audiométrie obtenue aux inserts (à modifier si vous travaillez au casque).

Où enregistrer ces fichiers sons dans vos PC ?

  • Pour Freefit, dans ce dossier :
Chemin Freefit
  • Pour Affinity, dans ce dossier :
Chemin AffinityAttention pour Affinity, le dossier Windows « ProgramData » est un dossier caché. Il faut autoriser Windows dans certains cas à afficher ces dossiers cachés. Penser également à demander à Affinity à rechercher ces nouveaux fichiers dans le répertoire REMSoundFiles.

Questions pratiques

  • DSL fournit un document très exhaustif, à la base pour l’adaptation pédiatrique, mais dont les pages 44 à 62 détaillent l’utilisation de ces signaux en pratique quotidienne.
  • Utiliser plutôt le test REM avec les fichiers bruités de DSL ou l’ISTS filtré ? Pour avoir testé les premiers (de DSL), vous constaterez peut être comme moi que le gain, après quelques secondes d’émission, se met radicalement à diminuer : c’est bien du bruit… C’est pourquoi, sans être présomptueux, je trouve plus intéressant d’utiliser les deux fichiers d’ISTS filtrés par la maison !
  • Le fichier ISTS_S.wav émis à 45dB SPL est-il trop faible ? Vous serez peut être surpris de la faiblesse d’émission (surtout ISTS_S.wav), mais pédagogiquement, il est très intéressant de se rendre compte du très faible niveau du /s/ dans la réalité (45dB SPL). Le /∫/ est moins surprenant. C’est également là que l’on se rend compte du côté un peu illusoire de la perception à 6kHz, même avec une transposition fréquentielle !
  • Freefit permet-il d’utiliser ces fichiers dans PMM « Réponse Avec Aide Auditive » ? Non, ces signaux n’apparaîtront pas dans la liste des signaux de test disponibles. Il faut utiliser le mode « Freestyle » pour y avoir accès dans la banque de données de signaux.
  • Ces signaux sont-ils disponibles d’origine sur les chaînes de mesure ? Pour être précis, les deux fichiers « bruités » de DSL NBN S et NBN SH seront présents dans l’Affinity version 2.8 à partir de juin 2016. Dans Freefit, ils sont déjà présents sous les noms Ling6 S et Ling6 SH. Les fichiers ISTS_S et ISTS_SH, eux, n’existent nulle part : exclusivité du blog !

Exemple

Voici un patient pour qui le seuil à 6kHz en dB SPL au tympan ne permet pas la perception du /s/ (courbe rose-violet). L’activation d’une duplication fréquentielle ici (Bernafon Saphira 5 CPx) permet de visualiser le décalage apporté à la zone 6kHz : la perception devient possible (à défaut d’être souhaitable…).
Dupli_S
On s’aperçoit également que cette duplication est proposée par défaut à un niveau « moyen » par le logiciel, et qu’elle est peut être un peu forte, car supérieure en intensité à la zone d’origine. Un réglage plus léger sera peut être mieux supporté (mais le patient ici vit très bien avec ce réglage depuis maintenant un an).

Conclusion

A l’usage, je pense que le fichier /∫/ est peu utile; on est encore dans la bande passante « utile » de l’appareillage. Le cas de /s/ est plus intéressant pour diverses raisons :
  • le fichier NBN S.wav s’avère quasiment inutilisable chez certains fabricants, le gain lors de l’émission diminuant drastiquement
  • Si on utilise ISTS_S.wav, la mesure devient possible, mais on s’aperçoit qu’il est illusoire de faire percevoir ce phonème dans une grande majorité des cas (surdité trop importante dans la zone d’émission et la zone adjacente)
  • Toujours en utilisant le signal ISTS_S.wav, le niveau d’émission est plutôt faible, et on est en permanence en limite de point d’expansion chez certains fabricants. Vous serez peut être surpris de voir que quelques aides auditives n’appliquent aucun gain à ce signal (la majeure partie du temps sous le point d’expansion), ou des variations de gain « explosives » (à des moments au dessus du point d’expansion, à d’autres en dessous), ou une amplification normale (le signal est en permanence au dessus du point d’expansion, réglé assez bas). Ce phénomène avait été décrit sur le blog Starkey à la suite d’un article de 2009 de Brennan et Souza (la figure 6 montre bien l’effacement de la consonne par la hauteur croissante du point d’expansion).
Bref, pour nous français, chez qui le pluriel et le possessif sont muets, la perception du /s/ n’a pas la même importance que chez les anglo-saxons, puisque l’article donne le plus souvent l’indication d’un pluriel, la suppléance mentale faisant le reste. De plus, toujours pour le /s/, son identification n’est pas du tout la même s’il est en dernier phonème d’un mot (le pluriel anglais) ou au milieu d’un mot. Dans ce dernier cas, sa perception sera facilitée par les transitions formantiques, rendant inutile un décalage fréquentiel.
Le décalage fréquentiel serait-il un réglage adapté aux anglo-saxons en priorité ? Allez savoir… Bons tests aux plus téméraires !

3 – Le Saint Graal de l’audioprothèse : mesurer le RSB en sortie d’aide auditive – Test 3… et fin !

Suite du premier et second billet. Troisème test après celui ci et celui ci.

Troisième (et dernier) candidat : WIDEX UNIQUE 440 Fusion

Il s’agit d’un RIC pile 312, successeur du circuit DREAM 440. Le Widex UNIQUE marque une rupture technologique qui semble importante chez ce fabricant puisque l’on a pour la première fois une détection automatique de 9 environnements sonores différents, le choix entre la transposition fréquentielle « classique » ou une duplication (mais ce n’est pas le sujet qui nous intéresse aujourd’hui), 4 convertisseurs A/D  de 18bits, soit pas loin de 108dB de dynamique, un seuil d’enclenchement possible vers 5dB SPL (étonnant), etc… Surtout, et là c’est plus surprenant (pour les audios habitués à la marque) et intéressant, l’amélioration de l’intelligibilité ne repose pas uniquement sur un réglage de « réduction du bruit » à proprement parler, mais plusieurs réglages de détection et et d’amplification de la parole (Speech Enhancer), dont un mystérieux réglage « Audibilité ». Widex explique d’ailleurs que les patients agissant sur le potentiomètre à la hausse, agiront spécifiquement sur ce réglage de renforcement de la parole.

Alors ? Marketing tout ça ou réelle avancée technologique ?

Appareil testé sur un pré-réglage avec méthodologie propriétaire Widex, base audiogramme KS100. Le LTASS de la voix moyenne (65dB SPL) a été mis sur une cible sur DSL 5.0a, base insert et RECD HA1, comme pour les autres appareils testés, afin de tous les comparer dans des conditions de réglages similaires. Pour ce Widex UNIQUE comme pour les autres appareils testés, les rapports de compression sont restés tels que préconisés par leurs fabricants respectifs.

Laisser faire les automatismes ou « fixer » l’appareil dans un mode particulier ?

Connaissant depuis un petit moment déjà l’anti-larsen Widex, on pourra certes lui reprocher plein de choses, mais en aucun cas d’inverser la phase du signal. C’est le genre d’effets collatéraux que l’on découvre en faisant ce genre de tests… Donc, et contrairement aux autres fabricants testés précédemment, j’ai décidé :
  • dans un premier temps, de le tester en désactivant la détection automatique d’environnements, d’activer le micro directionnel fixe avant, mais en activant ce fameux réglage « d’audibilité » au maximum; donc en fixant l’appareil dans une sorte de mode « parole dans le bruit », avec anti-larsen actif
  • puis de le tester dans un second temps « tel quel », sans activer, désactiver ou sur-activer de traitement du signal particulier, ni désactiver la reconnaissance automatique d’environnements. Je ne l’avais pas fait lors des essais précédents, les extractions n’auraient alors pas été possibles à cause de l’anti-larsen par opposition de phase des deux appareils précédents testés (et dans une moindre mesure, de la détection automatique des environnements)
  • enfin, de comparer les deux conditions afin de savoir si ce réglage d’extraction de la parole améliore réellement le RSB

Les résultats « visuels » à RSB -5dB :

U440_AUDIB_SNRm5 Les connaisseurs de Widex reconnaitront le fonctionnement typique de la marque : la réduction du bruit et/ou l’activation du mode directionnel est très progressif, mais nettement plus rapide que sur les modèles précédents où il fallait 10 à 15 secondes à l’appareil pour activer ses divers systèmes. Sur cet UNIQUE440, c’est beaucoup plus rapide : environ 7 secondes. Les crêtes semblent bien préservées tout au long de la mesure, n’oublions pas que nous sommes à un RSB de -5dB en entrée.

On écoute ?

 Voici d’abord ce que le micro de référence capte en cabine à RSB -5dB :

REF_CABINE_SNRm5Et ce que ça donne à l’écoute en cabine, sans appareil (il y a de l’ambiance !) :

 Et voici avec l’appareil, toujours à RSB -5dB en entrée, réglage d’audibilité au maximum (c’est l’écoute du visuel avec les zones temporelles entourées) :

On sent très nettement, entre la 12ème et la 15ème seconde, la réduction du bruit. La parole devient alors de plus en plus audible. Est-il plus probable que ce que l’on entende soit dû à l’enclenchement du microphone directionnel et/ou à l’activation d’un réducteur de bruit ? Nous verrons cela plus en détail par la suite… Suspenssssssss inssssssoutenable !!

 Des chiffres (réglage « Audibilité » maximum + micro. dir. fixe avant) :

Juste à noter, un détail : les extractions des signaux issus du Widex UNIQUE 440 ne peuvent se faire qu’avec un alignement par l’enveloppe des signaux SpN, SmN, mSmN et mSpN. Impossible d’avoir des extractions correctes en alignant par la structure fine… à l’inverse des deux autres fabricants testés ! Mystère… U440_audMax_micDir On trouve sur ce graphique :
  • ce que capte en parallèle le micro de référence (lignes 10 à 14)
  • les Leq en dBA(30s) respectifs du signal et du bruit (colonnes D et E)
  • lignes 3 à 7 : les extractions avec le UNIQUE 440
  • colonne C3<–>C7 le RSB réel en entrée (issu du micro de réf.)
  • colonne I3<–>I7 le RSB en sortie de l’appareil
  • colonne J17<–>J21 la différence entre le RSB à la sortie de l’appareil et le RSB réel en cabine (mic. de réf.)
La parole est très stable (delta de 3,5dB de RSB +10 à RSB -10), l’appareil « n’emporte pas » le signal avec le réducteur de bruit (ça arrive des fois…). Le bruit varie de 20 dB en entrée pour 17dB en sortie. L’amélioration du RSB par l’appareil est d’environ 8dB dans ce mode (colonne I – colonne C) de +10 à à 0dB en entrée. Les deltas sont en J17<–>J21. On est donc face à un appareil très performant dans le bruit, présentant un très efficace mode directionnel, mais couplé à un système qui semblerait préserver (donc différentier ?) le signal utile. Comment mettre en évidence ce système ? S’agit-il plutôt d’un réducteur de bruit ou d’un détecteur/expanseur de parole ?

« Audibilité renforcée » : réglage utile ou gadget ?

Vous vous demandez certainement (comme moi…) si le fait de déplacer un curseur de deux crans va réellement agir sur l’audibilité de la parole. Et quelle est l’action de ce réglage ? Une réduction du bruit dans les silences de la parole permettant une émergence du signal utile (comme le Bernafon) ? Ou au contraire une détection des indices vocaux et une amplification renforcée sélective ? Une seconde série de mesure à été refaite :
  1. comme la précédente, audibilité max et mic. directionnel avant fixe
  2. réglage « standard » en mode automatique total
AN : le réglages sont très reproductibles, puisque les deux mesures faites en « audibilité max. + mic. dir. » sont quasi-identiques sur les deux mesures.

Réponse avec l’analyse LeqA des divers signaux extraits sur les 30 dernières secondes (de 40″ à 1’10 ») du mix signal + bruit (donc après l’activation du microphone directionnel qui a dû se produire dans les 7 premières secondes) : U440_STDvsAUDIB Les réglages des gains sont les mêmes dans les deux conditions :
  • Il n’y a quasiment pas de différence entre les niveaux du bruit (lignes E3/E7 et E11/E15) avec le réglage d’audibilité « moyenne » ou « maximum » : le LeqA(30s) évolue dans les deux conditions de 63 à 80dB environ de +9 à -11dB de RSB(in). Le réglage d’audibilité n’est donc pas principalement un réducteur de bruit.
  • Par contre, on constate un net renforcement du signal de parole entre les deux conditions : +3 à +5dB en « audibilité maximum » par rapport au réglage « standard » (lignes D3/D7 par comparaison à D11/D15).
C’est donc l’action de ce réglage qui explique l’amélioration du RSB entre les deux conditions. Il ne s’agit donc pas d’un réducteur de bruit, mais bien d’une détection spécifique et d’un renforcement du signal de parole.

Voici la progression du UNIQUE 440 :

U440_auto_audib L’amélioration du RSB est de 4dB environ en « mode auto » (courbe orange), ce que bien des fabricants aimeraient atteindre en mode directionnel fixe et RB au maximum… On notera juste que l’appareil, dans les deux modes de réglages va privilégier le confort plus que l’efficacité sous RSB 0dB.

Par contre en mode d’audibilité renforcée (courbe rouge), l’appareil regagne encore 4dB de RSB, ce qui donne au total une amélioration du RSB de 8dB entre 0 et +10dB et 6 à 7dB environ entre -10 et 0dB. Impressionnant tout de même, c’est le maximum mesuré jusque là entre les divers fabricants en monaural…

Au-delà de la performance pure, certains appareils performants atteignent quasiment ce niveau, mais avec une qualité sonore du signal utile très « artificielle » (je présume, hachée par les compressions). Ici, et c’est souvent le cas chez Widex, la qualité du son reste très bonne. Les extractions (en sortie de l’appareil) donnent un signal de parole clair, comme ici extraite des 30 dernières secondes d’un mix RSB -5dB : Ca fonctionne quand même bien la méthode de séparation des signaux par opposition de phase… Merci Messieurs Hagerman & Olofsson ! Il faudra un jour que je vous fasse écouter les extractions de parole de 7 fabricants testés, en blind test : nous aurons des surprises dans la qualité sonore… C’est un aspect des choses ignoré, mais qui doit avoir aussi son importance…

Emergence du message

Widex dit utiliser un SII « HD » dans son algorithme. Je ne connais pas de norme SII « HD »… mais la bonne vieille (et toujours en vigueur) norme ANSI S3.5-1997 qui définit le calcul du SII, auquel, c’est vrai, on peut ajouter un calcul (non encore normé) du SII bilatéral. Bref… améliore t-il le SII ? On peut présumer que oui puisque la parole est détectée et amplifiée sélectivement.

Voici ce qui se passerait si l’appareil n’améliorait pas le RSB (situation encore fréquente ces dernières années…) : U440_SNR0in_SNR0out RSBin_equal_RSBout_corr_KS100Le SII avec l’appareil serait d’environ 0,38 à RSB 0dB.

Et avec l’appareil, dont l’amélioration RSB est d’environ 7,2dB à RSB 0dB en entrée : U440_SNR0in_SNR7out U440_SIILe SII passe à 0.61 (SII calculé sur base audiogramme KS100, signal à l’avant et bruit arrière, par le logiciel SIP-Toolbox). On obtient une émergence améliorée de 23% du signal par rapport au bruit. Pour vous donner une idée : un SII de 0,33 est suffisant à un normo-entendant pour répéter 50% des mots de listes dysyllabiques, et 0,4 pour répéter 90% des phrases d’un test (selon la norme SII). Vous noterez au passage qu’il serait impossible d’obtenir un SII supérieur à 0,8…

Conclusion(s)

  • Le réglage « Audibilité » de ce Widex UNIQUE 440 fonctionne bien comme un détecteur et « expanseur » de parole
  • absence de potentiomètre standard, remplacé par ce réglage croissant de détection de la parole améliore progressivement de RSB; vous êtes gêné pour comprendre dans le bruit = appuyez sur la touche + !!!
  • les meilleurs résultats dans le bruit (+8dB de RSB) sont obtenus avec un programme spécifique, en désactivant le détecteur d’environnements, en mode directionnel fixe et audibilité au maximum, comme sur les modèles testés précédemment. La directionnalité fixe potentialise toujours nettement l’action des algorithmes.

Fichiers et extractions

Pour les incrédules de la méthode (ou des résultats obtenus), ce que je peux comprendre, vous trouverez à l’adresse de ce lien tous les fichiers de calibration des micros de référence (Behringer) et de mesure (DPA) ainsi que les enregistrements avec ce UNIQUE 440 FS, découpages des séquences et extraits correspondants de parole et bruit à chaque RSB. Condition de test : Audibilité max. et mic. dir. fixe avant.

Formule d’usage : l’auteur signale un lien d’intérêt avec le fabricant testé, puisqu’il a accepté de me prêter cet appareil avant sa commercialisation officielle, mais pas dans le but de ces tests. Le « risque » est relativement important pour Widex qui a décidé de prêter quelques appareils à des fins comparatives à des patients déjà équipés de technologies évoluées. Si les résultats n’avaient pas été à la hauteur, je n’en aurait peut-être pas parlé, et chacun se serait fait son idée. Ce n’est pas (à mon humble avis), le cas. Comme d’habitude, n’y voyez aucune malice (et d’ailleurs, j’arrête la diffusion publique de ces tests, en attendant que les facs, en études multi-centriques, prennent le relai avec du matériel professionnel en cours d’installation), ne déduisez rien d’absolu au vu des seuls résultats. L’appareillage auditif est une alchimie entre l’audioprothésiste, son patient et la technologie la plus appropriée qu’ils choisissent en commun.

Ce troisième test conclura donc les billets sur l’analyse du RSB en sortie d’aide auditive par la méthode de séparation des signaux de Hagerman & Olofsson. Elle est cependant incomplète, car potentiellement améliorable par une même mesure, mais en binaural. Il est intéressant (j’espère) et rassurant de voir que la technologie a énormément évolué ces dernières années. Ce que nous ressentons vaguement dans les dires de nos patients est une réalité tangible et mesurable avec quelques appareils récents.

J’ai entendu parler (mais je ne lis pas ce genre d’articles) qu’un journal de consommateurs assimilait les appareils auditifs à des biens électroniques de grande consommation, et dont le prix ne pouvait que baisser dans le temps, comme tout bien électronique qui se respecte… C’est bien vite oublier que toutes ces améliorations sont le fruit d’algorithmes de plus en plus sophistiqués associés à l’évolution de composants ultra-spécifiques à l’appareillage auditif. Ces derniers ne sont qu’au service des premiers. Car, quelle est la différence entre l’appareil d’il y a 5 ans, et par exemple ce Widex UNIQUE 440 ? Pas le micro directionnel… Cette recherche, je veux bien le croire, nécessite des moyens colossaux en temps, en cerveaux et technologie.

Les appareils de 2015 n’ont finalement plus grand chose en commun avec ceux de 2005, mais présentent des spécificités importantes de comportement inter-marques.

Entre celui qui privilégie le confort avec une diminution de sonie importante, mais en conservant toujours un RSB amélioré, celui qui mise sur un « nettoyage » du bruit dans les silences de la parole, celui qui va chercher à améliorer la perception des crêtes afin d’améliorer le RSB, et que sais-je encore, les différences de fonctionnement sont très variées et très différentes selon les fabricants.

Pouvons-nous penser un seul instant que tous pourraient s’adapter indifféremment à n’importe quel patient ? Certainement pas…

Malheureusement, la seule lecture des fiches techniques ne nous renseignera pas sur leurs manières d’agir. Et certaines fois, la présentation de ces technologies se résume à une soirée promotionnelle…

A nous d’être curieux 😉

« Send out the Signals… Deep and Loud ! »*

Et pour finir cette série de 5 billets sur une note légère, un peu de musique avec un très beau morceau de Peter Gabriel (* paroles de la chanson) qui colle bien au sujet : Signal to Noise ! Où même le bruit peut devenir signal, si on le décide…     Encore merci à Franck et François-Xavier !

REMFit Bernafon – Le fait-il bien ?

RemFit désigne la passerelle entre le logiciel Bernafon Oasis (version 19) et Affinity (version maxi 2.3). Bernafon et les autres (sauf Starkey et Widex…) récupèrent déjà les données REM type REUR et RECD, mais le concept va plus loin en pilotant directement la mesure in-vivo d’Affinity par le logiciel de réglage. A noter que Siemens fait déjà ça et même Widex, il y a très lontemps pilotait Aurical depuis Compass (et ça marchait !). Le but: appuyez sur le bouton « Start » et le logiciel vous met l’appareil sur cibles. Magnifique ! Test !! Le patient test: image1 Bien sûr, comme tout le monde, quand on teste un nouvel appareil ou une nouvelle fonctionnalité, on prend le pire de nos patients (le pire des audiogrammes). C’est de bonne guerre ! Dans ce cas précis, les appareils choisis sont des Acriva 7 Rite adapté en dômes ouverts. Le TEN-Test est positif dès 3KHz, donc la correction se fera jusqu’à 2KHz et transposition fréquentielle (pardon « Frequency Composition » !) sur l’intervalle de mon choix (voir post sur le sujet plus bas). Que fait RemFit:

REMFit

Un conseil: faire la calibration anti-larsen avant la MIV, le gain disponible réel étant bien supérieur des fois à l’estimation logicielle.

Il faut d’abord mettre des sondes in-vivo sur le casque REM et les calibrer par le logiciel Oasis:

Calib Sondes

Les sondes sont calibrées comme en MIV « classique »: sonde de mesure devant le micro de référence, le tout face au HP.

La MIV par le logiciel se fait par défaut à 65dB SPL d’entrée, mais on peut ajouter les intensités 50 et 80dB SPL par défaut dans le logiciel ou à la demande:

REAG cible

Le petit côté magique: en fait à Berne, des milliers de marmottes, au moment où vous appuyez sur « Droit », « Gauche » ou « Les deux », prennent le contrôle de votre PC et vont faire les mesures, plusieurs fois s’il le faut, automatiquement, jusqu’à ce que les cibles soient atteintes au mieux !

Ah non, les marmottes qui plient le papier d’alu, c’est un autre truc Suisse…

Bref ! Ca marche effectivement tout seul et vous voyez de façon miraculeuse les appareils se régler seuls en plusieurs étapes automatiques. Pour peu que vous ayez fait votre audiométrie aux inserts, que le logiciel ait récupéré un RECD, et donc que vos cibles soient précises au tympan, tout devrait donc coller au mieux:

REMFit ajustés

Ici, le niveau 80dB n’a pas pu être émis (c’est trop fort, il faudrait plutôt 75dB SPL max.), et il faut le décocher pour ne pas bloquer le test. Le logiciel n’est pas content car il n’est pas « sur cibles » (à 3K et plus), et c’est là que l’on voit la différence entre un cerveau humain (« Mais c’est ce que je voulais ! ») et la machine (« J’ai pas pu taper le 3 et 4KHz dans les cibles. End of message ! »), donc avertissement. Mais nous savons, nous les humains, que c’est mort/désafférenté au-delà de 3KHz, et qu’il n’est pas important d’aller y mettre de l’information ! Rage against the machine !

Et ça marche ?

REAR REMFit

Et oui ! Pile poile ce que je voulais.

Avouons quand même: une MIV avec ISTS et calcul des CR de la dynamique vocale, vous avez plus d’information qu’avec REMFit, non ?

Donc oui, ça marche, mais quitte à mettre une sonde, pourquoi ne pas passer directement sur la chaîne de mesure avec toutes les subtilités et les informations apportées par les signaux vocaux réels.

D’autant plus qu’ici, la transposition était proposée par le logiciel à partir de 2.9KHz, en plein dans la zone inaudible pour le patient, et seule une « vraie MIV » pouvait mettre en évidence qu’il fallait rabaisser son point de départ:

FC REMFit

Pour ce qui est de la mesure in-vivo de l’énergie transposée, voir ce post.

Bravo quand même à Bernafon, beau travail d’interface Oasis/Affinity. Seul regret: les courbes de MIV ne sont pas stockées dans Noah.

Prochain test: Oticon et sa MIV intégrée, qui, elle, permet l’utilisation de signaux vocaux. A suivre…

Techtez les décalages fréquenchiels !

Ca porte en général un doux nom du type « Sound Recover » (SR) ou « Audibility Extender » (AE). Le terme générique souvent utilisé est « frequency shifting » ou « frequency lowering » (décalage ou rabaissement fréquentiel). On peut considérer que ces techniques ont franchement changé la vie des utilisateurs de ces systèmes, même si on peut discuter de l’apport d’intelligibilité (la masse d’articles sur le sujet est assez impressionnante). Le principe de ces système, la zone 3, non audible pour causes multiples va être ramenée dans la zone 2 (AE) ou en lisière audible de la zone 2 (SR):

Un zone fréquentielle non audible (3) va être "décalée" vers une zone audible

Mais… (sinon il n’y aurait pas d’article !), comment « objectiver » (pas joli ce mot) ces systèmes ? Où démarrer ? Où s’arrêter ? Que transposer/compresser ? Et surtout: comment observer l’effet produit sur la parole amplifiée ? A titre personnel, j’ai assez vite pu mettre en évidence la transposition fréquentielle (AE) par le Visible Speech, sur une voix « live ». Le plus frappant est de prononcer un /s/, en général bien ciblé vers 5/6KHz et de le voir se décaler vers 3KHz. C’est frappant, mais un peu « appuyé » comme démonstration… Quant à la compression fréquentielle (SR), je faisais confiance… bref je séchais ! Alors Zorro est arrivé ! Zorro ce n’est pas moi, c’est un constructeur de chaînes de mesure: Audioscan. Non distribué en France, ce constructeur a mis au point un signal (trois signaux pour être exact) de mesure (signaux vocaux) afin de tester les appareils à décalages fréquentiels. Ca fait déjà quelques mois de ça quand même, mais les nouvelles d’Amérique me sont amenées par les mouettes qui font la traversée, désolé… Donc je reprends: la manip. consiste à créer un signal vocal dont les médiums sont « amputés » et dont seule une bande dans les aiguës est laissée, 4000 ou 5000 ou 6300Hz:

Le « creux » dans les médiums sert en fait à mettre en évidence le rabaissement fréquentiel induit par l’appareil (transposition ou compression); c’est à dire que la zone « enlevée » permettra de ne pas « polluer » la visualisation (mesure in-vivo) du glissement fréquentiel. Le but étant de tester d’abord sans le système de décalage fréquentiel, puis avec. Le choix de signal 4KHz, 5KHz ou 6.3KHz se fait (à mon avis) surtout pour les systèmes à transposition, en fonction de la fréquence de démarrage. Pour les systèmes à compression fréquentielle, le signal filtré 4 ou 5KHz semble suffire (encore mon avis). Et ces signaux ? Comme souvent Audacity est l’ami des audios, l’ISTS est passé à la casserolle:

Donc trois fichiers wave distincts selon le filtre passe-bande souhaité, intégrés dans la chaîne de mesure. Intégrés à la chaîne de mesure, ça donne un test « test REM décalages fréquentiels » que vous pouvez télécharger pour Affinity (2.0.4 sp2). Voyons voir si ça marche… va t-on enfin visualiser tout le travail de ces systèmes ? Est-ce que ça marche ? Quelques surprises…
  • La transposition fréquentielle:
Le principe est connu, rétrograder d’une octave une bande fréquentielle:

Principe de la transposition fréquentielle

Là, je dirais que l’effet est tellement ENOOOORME qu’il a toujours été facile de le mettre en évidence in-vivo. Il suffisait de produire un son situé dans la zone transposée et de le chercher une octave plus basse. Par exemple sur ce patient:

NS in-vivo sans transposition

La perception est nulle pour la zone 6KHz (le /s/ par exemple). Si on active un programme de transposition de la zone:

Proposition logicielle de transposition

En utilisant l’ISTS filtré sur 6.3KHz, on obtient:

Transposition du 6KHz

On voit bien que la zone 3KHz est plus élevée que sans la transposition (à comparer avec la courbe verte de la mesure REM précédente). Est-ce que ce réglage sera toléré sans problème, c’est encore une autre histoire… mais la visualisation est possible, le système est objectivable (ah ! ce mot !). Par contre, la zone transposée « s’ajoute » en intensité à la zone « saine », d’où la nécessité parfois soit de minimiser l’AE (c’est réglable), soit de diminuer le gain de la zone à transposer dans le programme sans transposition. L’avantage d’un signal vocal filtré, je le redis, est de mieux visualiser la zone transposée puisqu’elle se retrouve seule dans les médiums/aigus.
  • La compression fréquentielle:
Alors là, il y a du boulot. A titre personnel, je n’avais jamais réussi à visualiser l’effet de ce système en action. Ca restait « noyé » dans les fréquences contiguës en mesure in-vivo jusqu’à maintenant. Allez zou:

Voici l’audiogramme du gentil « cobaye ».

Et voici le réglage logiciel proposé:
Réglage défaut du Sound Recover

Réglage défaut du SoundRecover

Il est donc proposé de démarrer la compression fréquentielle à 4.8KHz. Si je ne doute pas que certains sons soient perçus dans cette zone, j’ai nettement plus de doutes pour les indices vocaux, et effectivement, mesure in-vivo à la voix (ISTS):

NS in-vivo voix moyenne

Aucune information ne passe au-delà de 4KHz: le choix d’une fréquence « receveuse » à 4.8KHz n’est pas judicieux si on veut faire passer des informations vocales dan cette zone.

Donc première chose: si on se sert de la compression fréquentielle pour améliorer la perception vocale des zones fréquentielles aiguës, il est quasiment indispensable de réaliser une mesure in-vivo de niveau de sortie (REAR avec ISTS par exemple) afin de bien déterminer à quel endroit exact on enclenche le système. Dans le cas ci dessus, la zone 3K/3.5Khz semble appropriée si on ne veut pas plus augmenter le gain à 4KHz (zones mortes par exemple…). Le principe de la compression fréquentielle étant de démarrer en « lisière » de la bande passante audible, autant bien calculer sa zone de réception, la fameuse « cut-off frequency » de l’illustration suivante:

Le principe de la compression fréquentielle

Et après essais à 3.9 puis 3.3KHz pour le patient suivant, on obtient:

REAR ISTS filtré 4KHz sans et avec SoundRecover démarré à 3.3KHz

J’explique la mesure: la courbe fine orange est le signal filtré 4KHz sans activation du SoundRecover, la courbe grasse après activation. On constate une élévation du niveau de sortie (légère, environ 5 dB) vers 3.5KHz provoquée par le rabaissement fréquenciel de la zone 4KHz et plus. Donc léger « glissement » en fréquence et augmentation de niveau.
  • Discussion:
A l’usage, on peut tous le constater, la transposition est très efficace, « visible » et audible et permet à certains patients de retrouver des sons totalement oubliés et inaccessibles autrement. De là à dire que la transposition est un système plus dédié aux « zones mortes » ou pentes audiométriques importantes, il n’y a qu’un pas… que je ne franchis pas ! Toujours est-il que la transposition demandera un temps d’apprentissage. La compression, elle, est plus discrète, moins surprenante pour les patients que la transposition. En essayant de tester in-vivo par le moyen de signaux filtrés, on s’aperçoit qu’elle est peut-être moins « visible » que la transposition pour les pentes fortes, donc peut-être moins adaptée. Mais à l’inverse, elle permet d’enrichir les informations vocales dans des zones en général inaccessibles (4K et au-delà), sans choquer. L’usage d’un tel système sur une surdité plate et moyenne est très facile à mettre en évidence avec ces signaux (voir l’article de Phonak suivant). Donc transpo ? compression fréquentielle ? Vous avez des éléments de réponse. A vos tests !
  • A propos du test:
Vous trouverez en téléchargement un test prédéfini pour Affinity 2.0.4 sp2, il suffit de placer les signaux filtré, téléchargeables ici dans un dossier quelconque et de paramétrer le test pour aller les chercher. Pour les autres chaînes de mesure récentes (Unity 2 ou FreeFit), je pense qu’il est possible aussi d’intégrer ces signaux wave. Bibliographie: Présentation du test mis au point par Audioscan (c’est vers la fin). Le test Affinity à importer. Les signaux à télécharger. Un article de PHONAK sur les tests in-vivo d’efficacité du SoundRecover, très impressionant pour les surdités « plates »… ça marche ! Une « contre-étude » d’un fabricant (!!!) sur les systèmes de rabaissement fréquentiels. Censuré ! (non, je blague, je ne le retrouve plus !). Un article du Kuk qui met au point un test vocal tentant de mettre en évidence les effets de ces systèmes de décalages fréquentiels: le test ORCA. Du même auteur, un article sur les tests des systèmes de rabaissement fréquentiel. Merci à Jean-Baptiste BARON pour les manips.