Étiquette : EIN

… suite de la première partie.

En reprenant l’exemple suivant :

Capture

 

Environ 30dB SPL de bruit de fond (EINLevel) à 3KHz peuvent-ils être considérés comme gênants pour ce patient ?

On peut penser (mais je n’en ai pas la confirmation) que lorsqu’un fabricant met un modèle sur le marché, de surcroît s’il est censé pouvoir s’adapter sur des surdités légères à moyennes, il connait les limites de BDF acceptables issues de la littérature. Enfin, on espère…

Une solution radicale pour se garantir de toute perception de BDF serait de placer le 1er TK en entrée assez haut, mais pas trop quand même car il y aurait un risque de sous-amplifier les zones failles de la parole; disons 30/35dB SPL. C’est étrange, en explorant les courbes entrée/sortie (si par chance vous les avez), c’est justement la limite très commune d’expansion !

Un seul fabricant, depuis fort longtemps s’est quand même aventuré à passer sous cette barre : Widex, depuis le premier Senso. Mais quand vous voulez amplifier des niveaux très bas (5 à 30dB SPL) pour éventuellement les faire émerger au-dessus du seuil, il va falloir énormément de gain (si le larsen vous le permet). Et donc vous pouvez amener par la même occasion le bruit de fond en même temps que l’information dans la zone audible. Je crois me souvenir que tout avait été pensé chez ce fabricant pour maintenir le niveau du BDF toujours sous le meilleur seuil, notamment par la mesure du « sensogramme » qui était (est toujours) quasi obligatoire, comme celle du larsen. Très rapidement, l’effet d’évent (et pas uniquement son seul diamètre) a été également mesuré afin d’estimer la limite basse de TK sans larsen et/ou sans risque de BDF perceptible dans les BF.

Bref, pour passer sous la barre des 30dB SPL en entrée sans craindre une perception de BDF avec une méthodologie d’amplification non-linéaire, il vaut mieux avoir confiance en sa technologie…

Macrae et Dillon ont établi des niveaux de BDF acceptables en fonction du gain apporté (donc en fonction du seuil d’audition) à diverses fréquences, et mesuré dans un coupleur HA1 (intra). Pour donner quelques exemples (mais vous pouvez les retrouver sur l’article téléchargeable de la première partie) :

@1KHz, de 0 à 50dB de gain : env. 17,5dB SPL

@250Hz, de 0 à 45dB de gain : env. 37dB SPL

@2KHz, de 0 à 60dB de gain : env. 13dB SPL

Attention : il s’agit de bruit de fond à l’entrée, comme vu dans la première partie. On constate une gêne survenant plus rapidement après 1KHz. Etrangement, la « tolérance » au BDF semblerait importante dans les BF, mais ces zones fréquentielles sont souvent masquées (et le BDF avec) par le bruit ambiant, la « rumeur ». Et d’autant plus  l’appareillage présente un évent : le bruit ambiant entrant par l’évent minimise la perception du BDF de l’appareil.

Je vous passe les calculs éprouvants des auteurs, mais je reprendrais le résumé de leur méthode de calcul du EIN acceptable en fonction de la surdité : considérant un seuil à une fréquence donnée, ce seuil doit être corrigé avec NAL (et oui, c’est Dillon quand même !). Attention, ici, c’est NAL « old school » = formule linéaire d’avant NAL-NL1, c’est à dire NAL-R.

On a :

 EINL = Max( HTL + MAP – CG – Corr – 15,EINL0 )   (1)

Et là, oui, c’est beaucoup plus clair n’est-ce pas ?

En fait, NAL ne fournissant pas de cibles de niveaux de sortie en dB SPL au tympan (REAR), contrairement à DSL, Macrae et Dillon on converti la perte auditive (HTL), en niveau au tympan. Ils ont donc pour ceci ajouté au seuil HTL, le MAP (qui est le niveau d’audition minimal mesuré en dB SPL au niveau du tympan), ce qui a converti en quelque sorte le seuil HTL en seuil SPL au tympan. Mais comme la valeur du gain (CG) est donnée dans le coupleur d’intra (le HA1), ils ont ajouté une correction (Corr) pour passer du coupleur au tympan. Pour les puristes, cette valeur de correction provient de diverses tables de conversion toujours utilisées et très souvent citées dans la littérature : les valeurs de conversions (ou fonction de transfert) de Bentler & Pavlovic, et leur pendant en champ diffus. Aride… mais sachez quand même que ces valeurs se cachent encore dans tous nos logiciels de réglages et jusque dans nos chaînes de mesure (tables 1 & 2). Et enfin, la soustraction de l’EIN tolérable (EINL0) donnant 0dB SL (Sensation Level).

Vous retrouverez dans l’article (Table 6.) les valeurs de l’EIN max. acceptable, en fonction du seuil d’audition pour chaque bande de 1/3 d’octave.

Ce qui est intéressant, c’est de pouvoir saisir ces valeurs dans votre chaîne de mesure, comme ici pour un seuil de 0dB HL (ligne pleine) et un seuil, par exemple, de 50dB HL (carrés) :

Limites EIN

Par contre, il faut relativiser cette mesure, par l’apport de bruit de fond extérieur : performance du caisson de mesures (isolation) et BDF des transducteurs de mesure (microphones de mesure et de référence). Par exemple dans un caisson très performant, Bruël&Kjaer/Interacoustics TBS25 avec la config suivante:

20150306_173214

On obtient, au plus bas, cet EIN:

EIN TBS25 micros

Pour conclure, j’ouvrirais le débat sur les valeurs de Macrae et Dillon qui ont été obtenues à l’époque sur la base d’une formule linéaire (NAL-R). Il serait très intéressant d’avoir des valeurs aujourd’hui avec des formules de correction non-linéaires (NAL-NL et DSL) puisque les sons faibles sont nettement plus amplifiés qu’avec NAL-R, et que l’EIN risque donc potentiellement d’augmenter car le facteur CG de l’équation (1) augmente.

Avis aux étudiants de D.E. ou M1/2 en recherche de mémoire…

Les appareillages de surdités légères se multiplient ces dernières années (enfin, je trouve). Dans le même temps, je pense que nous ne sommes pas loin d’adapter quasiment 100% des aides auditives BTE/RIC/RITE avec deux micros, qu’ils soient utilisés dans leurs modes directionnels ou non.

La conjonction de ces deux faits augmente potentiellement le risque de perception de bruit de fond, notamment par un risque accru d’encrassement ou de panne du micro arrière, souvent plus exposé que le micro avant. Le circuit lui-même également génère un bruit de fond lors de son fonctionnement.

S’il est un sujet qui n’est pratiquement plus abordé par les fabricants, c’est bien celui du bruit de fond. On trouve en effet rarement ces données dans les fiches techniques aujourd’hui, alors qu’elles y figuraient encore systématiquement il y a… finalement longtemps ! (longtemps = + de 10ans en audiologie prothétique…). Et pourtant, l’importante amplification des circuits WDRC, voire FDRC actuels est susceptible d’amener ce bruit « brownien » électronique à un niveau perceptible, voire gênant.

Peut-on avoir une base quantitative fiable pour savoir si un bruit de fond se situe dans une limite tolérable ? Encore mieux : en fonction du seuil à chaque fréquence, comment déterminer si un bruit de fond risque d’être perceptible ?

Il est en effet difficile de savoir si 35dB SPL de bruit de fond est un niveau tolérable par un patient. Et même pour un audioprothésiste qui écoute (« L’Art perdu de l’écoute des aides auditives », repris de A. Rosette 😉 ), ou qui mesure ce BDF, où fixer la limite acceptable de qualité des composants électroniques à partir de cette mesure (ou de cette écoute) ?

Une mesure de BDF la plus utilisée en audioprothèse est la mesure du Bruit Equivalent en Entrée, ou en bon anglais « Equivalent Input Noise » ou EIN. La définition de ce terme m’a toujours parue « perchée », mais à la réflexion, elle est robuste (donc c’est moi qui ne suis pas assez perché) :

EIN = Bruit Equivalent  à l’Entrée :

  1. On suppose (c’est fictif) une aide auditive qui ne présenterait aucun BDF, avec un réglage équivalent (gain/fréquence) à celle (réelle) que l’on veut tester
  2. EIN = quantité de bruit qu’il faudrait envoyer à l’entrée de l’aide auditive fictive sans bruit pour avoir le même niveau de sortie (qui comprend l’amplification ET le bruit de fond mélangés) que l’aide auditive testée

Bref, trêve de bavardages, une bonne formule « et pi c’est tout ! » :

BDF dans le silence – Gain max. = EIN

Pourquoi faire intervenir une « aide fictive silencieuse » et donc exprimer le bruit « à l’entrée » plutôt qu’à « la sortie » ? Macrae & Dillon (2001) voient plusieurs intérêts à cela :

  • dans la plupart des aides auditives de bonne qualité de conception (pas les trucs faits en Chine et vendus en pharmacies), le BDF vient en majorité des micros, et le reste, du circuit
  • le BDF s’il était exprimé à la sortie, varierait en fonction de la position du potentiomètre (s’il y en a un); ce n’est pas la cas quand le BDF est exprimé en entrée
  • si le bruit était exprimé en sortie, les aides auditives à faible gain auraient toujours moins de BDF que les aides auditives à gain important

Ce qui veut dire :

  • que tester le BDF en entrée pour des appareils avec un potentiomètre (ou un réglage de gain) permet de s’affranchir du problème de l’augmentation de BDF avec l’augmentation du gain : en effet, si le BDF était testé en sortie, plus le gain serait élevé, plus le BDF le serait aussi. Le fait de retrancher le gain du BDF dans le silence permet de décorréler le BDF du niveau de l’amplification.
  • de même pour les appareils très puissants : s’ils étaient testés en sortie, leur amplification très importante (y compris dans un caisson de mesure très silencieux, mais jamais totalement silencieux) ferait croire à un bruit de fond très important. Le fait de le mesurer en entrée (donc de déduire le gain max.) permet de pouvoir comparer le BDF en entrée d’un « petit » appareil open et d’un surpuissant.

Donc en quelque sorte, la mesure de l’EIN « relativise » le bruit de fond par la soustraction du gain…

Pour calculer l’EIN, la chaîne de mesure va faire deux mesures successives dans chaque bande de tiers d’octave :

  1.  première passe : mesure du gain, en général à bas niveau d’entrée (40/50dB SPL par exemple) pour chaque bande de 1/3 d’octave
  2. deuxième passe : mesure du BDF dans chaque bande de 1/3 d’octave. Donc là, c’est le silence (relatif) dans le caisson, d’où l’intérêt d’avoir un bon caisson de mesures

Et donc ensuite, 2 – 1 = EIN. C’est la courbe bleue que vous voyez sur cette mesure :

Capture

Bon, maintenant que l’on a cette mesure d’un bruit de fond équivalent en entrée, qui est ici comprise entre 20 et 35dB, qu’en faire ? Bien ou pas bien dans ce cas ? Audible par le patient ou inaudible ? Mieux : potentiellement gênant ou non ?

La suite au prochain épisode….

~Entracte~

~Chocolats glacés, Eskimos, cacahuètes, Treets, …~